Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

In 2003, researchers using gene-sequencing machines completed a draft of the human genome, a readout of the entire sequence of nucleotides in human DNA. Now, a group of scientists from the Broad Institute of MIT and Harvard has created the first full genome sequence of a dog (a boxer named Tasha).

The researchers reported this week that they’ve also completed less-detailed genome maps of nine other breeds of domestic dogs, four types of wolves, and the California coyote. This catalogue of canine DNA will allow scientists to pinpoint the genetic differences between types of dogs and, hopefully, isolate the genes that make some dogs prone to cancer and other diseases shared with humans, as well as genes that distinguish, say, a Dachshund from a Great Dane.

“The hundreds of years of careful inbreeding to produce the various breeds have delivered a geneticist’s dream model for human genetic disease,” says Hans Ellegren, an evolutionary biologist at Uppsala University in Sweden who has followed the work.

Scientists searched the dogs’ genomes for single nucleotide polymorphisms or SNPs, locations in the genome where the exact sequence of nucleotides (the basic elements of DNA) may differ between individuals. SNPs are inherited in chunks, known as haplotypes. Scientists found that haplotypes within dog breeds are very long – about a million base pairs of DNA – compared with an average human haplotype of just 25,000 base pairs.

These long haplotypes, which reflect the high levels of genetic similarity within breeds, make looking for a disease gene more like searching for a pick-axe in haystack rather than a needle. “It’s 50,000 times easier to find these genes in dogs than in humans,” says Elinor Karlsson, a graduate student at Boston University and the Broad Institute, who analyzed dog genomes for the project.

To search for a gene involved in, say, bone cancer, scientists first compared genomes of dogs within a breed, looking for haplotypes unique to the animals that have cancer. Cancer-afflicted dogs of other breeds would likely carry similar patterns of SNPs, but in different arrangements on their chromosomes, which would help scientists to narrow down the location of the cancer-associated gene on the chromosome.

The research, published in the December 8 issue of Nature, was presented at the Bay Colony Cluster Dog Show in Boston, where scientists were collecting DNA samples from competing pooches to use in future analyses. A rough sketch of the poodle genome was published in 2003. But according to Eric Lander, director of the Broad Institute and senior author on the paper, the new sequence is stitched together far more closely than previous canine sequences, and is freely available to any researcher who wants to download it. Lander says he expects to see canine DNA microarrays – gene chips used to study how different genes interact with each other – similar to those created with human DNA, available within the next year or two.

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me