Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

If you cracked open an iPod nano, you’d find 16 flash chips inside, each capable of holding 250 megabytes of data, or room for about 1,000 songs. It’s pretty impressive. As soon as Apple rolled out its latest gadget, however, Samsung, which manufactures the chip, introduced a new flash chip that can hold eight times as much. So the iPod nano’s “cool” factor may have receded a bit.

But there’s a deeper trend here: the storage technology in consumer electronics devices may soon influence how computers themselves operate. Flash memory is coming to the PC.

Kevin Teixeira, a spokesperson for Intel, says data storage components, such as hard disks and flash chips, are actually outpacing Moore’s Law, the credo that predicts the number of transistors on a chip will double roughly every 18 months. At the same time, the demand for the iPod nano, smart phones, digital cameras, and other devices that use flash memory will keep driving down the price of flash memory components.

Unlike the spinning hard drive in today’s computers, as well as iPods from months ago, flash memory has no moving parts, making a smaller, more rugged gadget that’s also less prone to failure.

“Digital photography is possible because of flash,” explains Don Barnetson, associate director of flash marketing at Samsung. “Flash makes things smaller, take less power, and last longer.” Barnetson predicts that flash storage technology will bring features to cell phones that, two or three years ago, weren’t even available on your PC, such as storing and watching entire movies.

Flash can facilitate these operations because it stores data very differently than traditional hard drives. Right now, computers use a disk that stores individual bits, 1s and 0s, as a magnetic orientation in regions of the disk. The disk spins at 4,200 revolutions per minutes (in laptops), and the bits are read and written by a read-write head that resembles the arm of an old-fashioned LP player.

Because the disk spins, it can take up to 10 milliseconds to read a bit of data. Also, the motion drains energy from a battery and leaves the disk vulnerable to sudden movements that can damage a portion of the drive.

Flash avoids these problems because it is made of tiny transistors on a silicon chip. There are no moving parts, only moving electrons. Flash storage comes in two basic categories, NAND and NOR, where both names refer to the type of logic gates that allow the transport of bits. As Barnetson explains, data can be written faster to NAND than to NOR chips, and NAND chips also take up less space on a silicon wafer, and so are less expensive to produce.

3 comments. Share your thoughts »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me