Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

TR: And what about basic performance – after all, you can’t rely on the Internet today to give pure unbroken TV or telephone signals.

DVH: The Internet as we know it today is what’s called “best effort” by design – there’s no guarantee that information crossing the network will arrive within a specified time. You might think of the Internet as second-class mail. In many cases this leads to an unpredictable and often unreliable experience for end-users whose applications require on-schedule delivery. A good example of an application that needs scheduled (priority mail) service is Voice over IP (VoIP), an increasingly common use of the Internet. On any given day, a user can experience varying levels of performance on the same Internet connection. When the connection breaks or there is a loss of connectivity, it often takes a highly skilled professional to intervene to resolve the issue.

Even today, resolving network issues is more of an art form than a science, which makes it particularly difficult for an average user to troubleshoot problems themselves. Architecting the network with embedded performance and diagnostic technology will create a far more reliable and seamless Internet experience for consumers and businesses alike. Without reliability and easy means to troubleshoot network performance issues, next-generation applications and services will never see broad adoption.

TR: What’s the grand vision and when can we expect to see it realized?

DVH: We need a smarter, more reliable, secure, fast Internet that enables new ways to conduct science, engage in business, educate anytime and anywhere, and bind communities and families together in rich new ways. Through the partnerships between the higher education and research community, government, and industry, we already know many of the elements that will make up this next-generation network: operating on hundreds of waves of light over advanced fiber optic cables with upgraded Internet protocols; delivering ultra high-speed end-to-end performance; and smart software that protects content, protects privacy, authorizes users, deflects spam, and secures transactions. I am optimistic that such an Internet will be realized through the combined efforts of organizations like Internet2 all over the world.

By working hand in hand with our corporate members, the Internet2 community seeks to put these new technologies in the hands of businesses and consumers over the next 5 to 10 years. By providing corporate members with a stepping stone between the research labs and the commercial roll-out of products and services, Internet2 enables new technologies to be tested and developed in a futuristic environment. Corporate members then take what they learn and incorporate these capabilities into their products and services. Already today, technologies developed within our community have made their way into the commercial sector; for example, over 150 institutions have adopted Internet2-developed federated authentication software. This is just one example of many of how we are transferring new technology to the general public.

4 comments. Share your thoughts »

Tagged: Web

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me