Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

The technology eventually could be used to develop cell-based drug screens in order to determine how candidate compounds affect immune-cell signaling. For example, scientists could expose cells bound into an artificial membrane to different drugs, and observe how those drugs affect T cell clustering. “Understanding how [cell signaling] works is a big component of learning how to control it with drugs,” says Groves.

The findings could also lead to new treatments for auto-immune diseases, in which the immune system attacks the body’s own proteins. “Effective treatments for auto-immune diseases like Rheumatoid arthritis turn down immune response, but this leaves the patient more vulnerable to infection,” says Michael Dustin, an immunologist at the Skirball Institute of Biomolecular Medicine at New York University, who collaborated on the Berkeley project. “You could use patterned particles to make more specific treatments, but first we need to learn the language.”

Once researchers experimentally determine the signals associated with different patterns, it may be possible to build a particle with pre-patterned receptors that direct T cells to turn off the immune response, says Dustin. If the pattern was specific enough to turn off the immune response in particular organs, such as the brain in multiple sclerosis or the joints in rheumatoid arthritis, the rest of the immune system could still function effectively to fight viral invaders.

The technique also has blue-sky applications, going far beyond the immune system. “If you can make artificial surfaces that communicate with cells on a sophisticated level, you could make devices that tell cells what to do,” says Groves. “You could get cells to generate energy or do a chemical conversion; it would be tremendous.”

2 comments. Share your thoughts »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me