Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The need to reduce carbon emissions and to find a long-term replacement for oil has many people looking at hydrogen fuel cells to power factories and vehicles. But finding ways to store volatile hydrogen safely and bring down the costs of fuel-cell ingredients, which currently include the fantastically expensive element platinum, has proved difficult.

While the quest for the affordable fuel cell continues, many environment-conscious consumers have been turning to hybrid cars to reduce emissions. At the heart of the hybrid is a technology that may be less “sexy” than fuel cells, but, according to MIT’s Donald Sadoway, could be key to a fossil-fuel-free tomorrow – the rechargeable battery.’s nanotechnology and materials science editor, Kevin Bullis, recently talked with Sadoway, a professor in the department of materials science and engineering. He holds 13 patents, has received multiple teaching awards, and has published more than 100 papers on the future of batteries and the all-electric car.

Technology Review: Why did you get into battery research?

Donald Sadoway: What got me into this in the first place was the desire to get rid of the internal combustion engine. As far as powering portable devices and so on, there are business opportunities there, but I don’t get excited about it. I did not get into this line of research because I wanted to help somebody talk 30 percent longer on his cell phone.

TR: Why get rid of the internal combustion engine?

DS: The real problem is greenhouse gas accumulation in the atmosphere. If we don’t start dealing with that question, the rest doesn’t make a damn bit of difference – if 25 years from now the general temperature of the United States is 10 degrees Fahrenheit higher and the oceans are four feet [higher]. We really need to think about sustainable ways of generating electric power and then moving [around] as much as we can without burning carbon.

TR: What about using fuel cells for vehicles to reduce emissions?

DS: I don’t believe in fuel cells for portable power. I think it’s a dumb idea. The good news is: they burn hydrogen with oxygen to produce electricity, and only water vapor is the byproduct. The bad news is: you have to deal with molecular hydrogen gas, and that’s what’s stymieing the research and in my opinion is always going to stymie the research.

That’s why I don’t work on fuel cells. Where’s the infrastructure? Where are we going to get hydrogen from? Hydrogen is a molecule, it’s H2. To break it apart, to get H+, you’ve got to go from H2 to H, and that covalent bond is very strong. To break that bond you have to catalyze the reaction, and guess what the catalyst is? It’s noble metals – platinum and palladium. Have you seen the price of platinum? Lithium [for lithium ion batteries] is expensive. But it’s not like platinum. Lithium right now is probably $40 a pound. Platinum is $500 an ounce. If I could give the fuel-cell guys platinum for $40 a pound, they would be carrying me around on their shoulders until the day I die.

14 comments. Share your thoughts »

Tagged: Energy

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me