Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Every year unforeseen toxicity scuttles new drugs, sometimes even after they’ve received FDA approval. A major reason is that it’s difficult to predict the response of the liver, where drug toxicity often shows up.

“Liver toxicity issues are the primary reason for drug recall and withdrawal,” according to Yvonne Dragan, director of systems toxicology at the FDA’s National Center for Toxicological Research.

So it’s not surprising that mimicking liver toxicity in the lab would be the centerpiece of efforts to predict a drug’s toxicity early in the development process.

In the past, such screenings have been difficult because actual liver cells, once they are taken from the body, stop acting like liver cells within a day. But now Sangeeta Bhatia, an M.D., medical engineer, and associate professor at MIT, has found a way to keep liver cells doing their job for weeks. What’s more, she has developed a method for arranging them in multiple test wells, allowing drug researchers to screen multiple compounds at the same time.

Because the liver cells function for such a long time, they can be used to test for chronic toxicity, which is caused by low-level exposure to a compound over time. “That’s something you can’t do in other platforms currently in use,” says Bhatia.

Bhatia’s innovation was to develop a way of organizing the liver cells using photolithography, the same process used to create computer microprocessors. First, a pattern is created in test wells for a layer of proteins. Then liver cells are applied, which stick to the proteins, replicating the patterns. Finally, supportive cells are added, filling in around the liver cells.

Using this technique, Bhatia was able to experiment with many different configurations of the two cell types, until she found the one that kept the liver cells functioning for weeks.

That is, she found the pattern that works for rat liver cells. As it turns out, “human cells are completely different,” says Bhatia. Applying a technique called “soft lithography,” which uses a polymer stencil to pattern the proteins, Bhatia found patterns that let human liver cells function for a month. Then she tested to see if these liver cells could correctly predict the effect that drugs would have on a human liver.

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me