Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The problem is that levels of a single telltale protein can differ from case to case, making an assay based on one protein inherently unreliable. Sidransky says that Lieber’s method of measuring multiple biomarkers simultaneously has the potential to “diagnose the vast majority of people very accurately.”

In fact, according to Lieber, the “biggest advantage” of the nanowire detectors is that they could detect “10 or 100 things in parallel” without adding cost to the test.

Another benefit of the nanowire system is its flexibility. As new cancer markers are found, Lieber says, they could easily be incorporated into the device: “We could immediately take this new species and add that to our existing sensor.”

In talks with Lieber, oncologists have also suggested another application. Because the device gives results in real time, it could be used to monitor the effectiveness of cancer treatments. Right now, Lieber explains, the amount of drug a patient depends on his or her weight. Yet each person responds differently to different treatments. With such a nano-device, though, one could “fine-tune the dosage to make treatment much more effective.”

Lieber and his research group have already tested the ability of the device to detect cancer markers in human blood – a challenging task, since the target protein has a concentration around 100 billion times lower than the background proteins in serum. And they have also addressed some engineering issues with maintaining reliability.

How soon a cancer-detecting nano-device will be available depends, to a large extent, on developing the technology for mass production, according to Lieber, rather than with overcoming basic science obstacles. “If it’s sufficiently cheap, then people can get these tests on a periodic basis and see if they’re developing cancer. It could be ultimately like a CVS [pharmacy] test or a pregnancy test.”

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me