Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A major reason why malaria is so deadly – killing somewhere around a million people each year – is that red blood cells infected with the parasite become too stiff to squeeze through narrow capillaries, and so get stuck inside major organs. Yet microbiologists have not been able to take precise measurements of changes in the stiffness and other mechanical properties of cells – information that could shed light on the how malaria, as well as other diseases, progress, and how to treat them.

Now Subra Suresh, an engineer and materials scientist at MIT, is adapting nanotechnology tools such as optical tweezers to make those measurements – and in doing so has found that scientists have seriously underestimated the changes that malaria causes inside cells.

Furthermore, Suresh’s work is just the beginning of research into this promising field. His successes have helped spark the formation of a new consortium, announced last week, that will tackle major health problems – malaria, cancer, heart disease – using micromechanics.

The group, called the Global Enterprise for Micro-Mechanics and Molecular Medicine (GEM4), will bring together researchers from as far away as Singapore, France, Thailand, and Illinois. “It is very time consuming and expensive to build an infrastructure” for micromechanics research, says Suresh. The new consortium will be able to get new projects running faster by sharing existing equipment, lab space, personnel, and sources of funding. “Collectively we can take on much bigger problems than we can individually,” Suresh says.

Central to this collective undertaking is an alliance between the fields of engineering, with its quantitative measurements of mechanical properties, such as deformability and adhesion, and biology, which, says Suresh, has traditionally been more descriptive than quantitative. Suresh hopes his tools – which can measure forces as small as the push of a swimming sperm – will provide a more detailed knowledge of cells and their molecules that, in turn, can reveal ways to fight disease.

One of Suresh’s first measurements corrected previous estimates about the effects of the malaria parasite on red blood cells. Biologists have long known that malaria-infected cells are stiffer than healthy ones, and, as a result, cannot squeeze through capillaries. Suresh measured the stiffness of diseased and normal cells by attaching tiny glass beads to opposite sides of the cells and stretching them apart.

One bead is attached firmly to a movable plate. As the plate moves, the other bead is held in place by a focused laser, known as an optical tweezer. The light of the laser grips the bead with a precisely constant tension as the cell is stretched. Suresh compared how healthy cells and malaria cells changed shape under these forces. A healthy cell stretched out easily; while an infected one did not change shape.

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me