Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

In addition to DOE-sponsored research at universities and laboratories, a number of companies, including Millennium Cell and Energy Conversion, are developing hydrogen storage systems for fuel-cell vehicles. Although Ford, Honda, and GM are road testing fuel-cell vehicles powered by hydrogen, these cars have limited fuel capacity and do not meet the DOE benchmarks yet.

Earlier this year, the DOE also established three “Centers for Excellence” that provide funding and coordinate research activities for carbon, chemical, and metal hydride hydrogen storage. The department has deemphasized its earlier exploration of liquid or pressurized hydrogen storage because of safety and cost concerns. It will spend $5-6 million annually on each center, according to Chalk.

“It will be very tough for any technology to meet DOE long-term targets from a weight perspective,” says Clemens van Zeyl, president and CEO of Canadian firm Hera Hydrogen Storage Systems.

Hera is developing complex metal hydrides that can absorb and release hydrogen gas. They’re much lighter than hydrides composed of metal alloys such as nickel that were used in earlier research. The company is experimenting with sodium and magnesium-based nanomaterials that are more efficient in bonding hydrogen with metal, says van Zeyl, who hopes to have identified the most appropriate materials by 2007.

Despite the extensive amount of basic research yet to be done, van Zeyl is optimistic that the hydrogen storage challenges will someday be met. “A lot of people are discouraged about hydrogen [as a fuel carrier], but I see a lot of good things happening [in complex metal hydrides],” van Zeyl says.

Dan Benjamin, an analyst at ABI Research, is one of those who is still skeptical. He’s not seen anything in hydrogen storage research indicating that a breakthrough is imminent. He also points out that the DOE goals are very ambitious and “present a considerable challenge” for researchers. However, Benjamin acknowledged some advances in hydrogen storage technology for smaller devices, such as high definition cameras and computers.

According to Chalk, the DOE continually reevaluates its hydrogen program, as more information is garnered about technologies being developed. And, despite the slow progress in hydrogen storage, he remains optimistic that the long-term goals will be achieved, and that fuel-cell vehicles will become a reality.


0 comments about this story. Start the discussion »

Tagged: Energy

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me