Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Lucky $7
Samsung is not alone. Two hours away in Japan, Saitos successand fears of being eclipsed by Korealed the governments New Energy and Industrial Technology Development Organization to establish a $37 million, 2.5-year national project to crash-develop field emission displays. Launched in 2003, the project has four main participants: Hitachi; Asahi Glass; a Nagoya University-Noritake collaboration directed by Saito; and a joint effort by Mitsubishi, Kyoto University, Osaka University, and Osaka Prefecture University. The Koreans are still ahead of us, Saito says. But we are working hard to catch up.

So are a dozen other companies in Japan, Europe, and the United States. It is generally believed that the leaders are Noritake, Mitsubishi, Motorola, and the French Atomic Energy Commissariats Laboratory of Electronics and Information Technology in Grenoble. Motorola demonstrated a small prototype in 2002; last year, the French laboratory demonstrated several, as did a small, secretive Silicon Valley startup, cDream.

Nanotechnology is frequently described as a technology with the potential to capsize the established order. In a theory often touted by business consultants, an industrys largest incumbents are unlikely to develop such technologies, for two reasons: first, they are less profitable in their initial stages, and second, they have the potential to undermine existing products. Eventually, a small startup does develop the technology, using its sharp technological edge to overwhelm the competition and ultimately rocking the establishment.

Whether field emission displays fit this model remains to be seen. Nanotubes have obvious technological advantages on paper, but in the marketplace they are far from overwhelming. Right now, 42-inch plasma displays typically retail for $2,500 to $3,500; large liquid-crystal displays range from about $5,500 to $7,000. But the cost of both technologies is plummeting. The manufacturing cost per diagonal inch of plasma displays will be about $9 in 2005 and 2006, Kim says. But because we have startup costs, we have to beat that by a considerable margin$7 a diagonal inch, say.

Luckily for Samsung, production methods for field emission displays are similar enough to those for plasma displays that it can use one of its current fabrication plants to build the devices, avoiding the overhead costs of an expensive new factory. Yet if plasma displays keep getting cheaper, Kim says, we will lose our opportunity, and field emission displays will not replace them. And even if Samsung reaches the magic $7 number, he says, to stay competitive itll have to shoot past it, to perhaps $5 per inch. Nanotechnology can be a disruptive technology for displays, Kim says. But the conventional methods can disrupt it back.

Indeed they can. In July, Samsung SDI, the companys display subsidiary, announced that next year it will introduce a standard CRT for a 32-inch television screen that is only 14 inches deep, half the depth of existing picture tubes. Televisions with the new Vixlim tube, the company promised, will shrink from two feet in depth to 15 inches; they will also have better-quality images than either plasma or liquid-crystal displays and be up to a third cheaper. By the end of 2005, Samsung SDI predicts, the new tubes will be in every large standard television it makes. Standard picture tubes, according to company representative Lee, will enter a new boom period.

Asked about the new Samsung CRT, Kim emits a mock groan. They are very good researchers, he says. If field emission displays cost three times as much as CRTs and are only somewhat thinner, he acknowledges, nobody will buy them. Still, he believes that by covering its bets, the company as a whole will come out a winner. So will the consumer, who will enjoy steadily falling prices. In Kims view, field emission displays will eventually prevail, becoming the leading edge of an approaching wave of nanotechnological products. But the race will be a lot closer than subsequent business histories will make it seem.

0 comments about this story. Start the discussion »

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me