Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

McIntyre and McKitrick sent their detailed analysis to Nature magazine for publication, and it was extensively refereed. But their paper was finally rejected. In frustration, McIntyre and McKitrick put the entire record of their submission and the referee reports on a Web page for all to see. If you look, youll see that McIntyre and McKitrick have found numerous other problems with the Mann analysis. I emphasize the bug in their PCA program simply because it is so blatant and so easy to understand. Apparently, Mann and his colleagues never tested their program with the standard Monte Carlo approach, or they would have discovered the error themselves. Other and different criticisms of the hockey stick are emerging (see, for example, the paper by Hans von Storch and colleagues in the September 30 issue of Science).

Some people may complain that McIntyre and McKitrick did not publish their results in a refereed journal. That is true–but not for lack of trying. Moreover, the paper was refereed–and even better, the referee reports are there for us to read. McIntyre and McKitricks only failure was in not convincing Nature that the paper was important enough to publish.

How does this bombshell affect what we think about global warming?

It certainly does not negate the threat of a long-term global temperature increase. In fact, McIntyre and McKitrick are careful to point out that it is hard to draw conclusions from these data, even with their corrections. Did medieval global warming take place? Last month the consensus was that it did not; now the correct answer is that nobody really knows. Uncovering errors in the Mann analysis doesnt settle the debate; it just reopens it. We now know less about the history of climate, and its natural fluctuations over century-scale time frames, than we thought we knew.

If you are concerned about global warming (as I am) and think that human-created carbon dioxide may contribute (as I do), then you still should agree that we are much better off having broken the hockey stick. Misinformation can do real harm, because it distorts predictions. Suppose, for example, that future measurements in the years 2005-2015 show a clear and distinct global cooling trend. (It could happen.) If we mistakenly took the hockey stick seriously–that is, if we believed that natural fluctuations in climate are small–then we might conclude (mistakenly) that the cooling could not be just a random fluctuation on top of a long-term warming trend, since according to the hockey stick, such fluctuations are negligible. And that might lead in turn to the mistaken conclusion that global warming predictions are a lot of hooey. If, on the other hand, we reject the hockey stick, and recognize that natural fluctuations can be large, then we will not be misled by a few years of random cooling.

A phony hockey stick is more dangerous than a broken one–if we know it is broken. It is our responsibility as scientists to look at the data in an unbiased way, and draw whatever conclusions follow. When we discover a mistake, we admit it, learn from it, and perhaps discover once again the value of caution.

14 comments. Share your thoughts »

Tagged: Energy

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me