Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Starting Up

Who better to develop software that can filter out songs being illegally transferred over file-swapping networks than Napster founder Shawn Fanning (2002)? Early this year, the 22-year-old announced he was launching San Francisco-based SnoCap to commercialize technology that creates audio fingerprints of digital songs, saves them in a database, and then looks for the fingerprints when songs are transferred to determine whether they’re being used legally. Recording companies support Fanning’s work, as it helps them in court battles against peer-to-peer Napster descendants like Kazaa and eDonkey.

Justin Frankel (2002) left America Online early in 2004 and started Cockos in San Francisco, where he’s developing the JesuSonic, a computerized guitar distortion pedal. Right now, it’s not much to look at: a circuit board inside a cardboard box, with cables running to a computer keyboard, a tiny display, and a guitar pedal. The fact that it works is somewhat miraculous, says Frankel, and the psychedelic sound it creates is so otherworldly that he calls it “God’s own effects processor.” Because the device will be fully programmable, Frankel hopes it will inspire communities of hacker musicians. The inventor of Winamp, a hugely popular free MP3 player, Frankel has made a career of marrying his interests in music and software. “There are a lot of similarities, making music and writing code,” he says. “For one, they’re both nice to share.” He hasn’t yet formulated his business plan and doesn’t know how much of his technology he’ll actually give away. But his musical experiments can be heard, for free, at

Lou Montulli (2002) hopes to create a different type of music startup. He has assembled a team to make a portable music player that integrates software with Net-based services. Early prototypes allow users to organize large MP3 collections into playlists that can be discussed, compared, and traded through a communitywide Web service. If the plan comes together, Montulli would like to raise money this fall. He’s also finding time to consult on Chandler, the well-known open-source personal-information manager (see “Trash Your Desktop,” TR November 2003), and to work with the Open Voting Consortium, an open-source e-voting project. He and a group of University of Nevada students have built a prototype system that works like an ATM. After a person votes, the machine prints a paper receipt listing his or her selections. But just before the machine spits it out, an optical scanner creates an image of the receipt and saves it to memory. These digital snapshots allow election officials to double-check electronic tallies without gathering paper. With such redundant counting mechanisms, says Montulli, “every voter becomes a quality assurance tester.”

New Lab Space

Two TR100 recipients have recently taken charge of Intel-sponsored lablets, small research labs located near major universities. In June 2004, Todd Mowry (1999) became director of Intel Research Pittsburgh, a lab consisting of 15 Intel and Carnegie Mellon University computer scientists. Mowry hopes to advance existing work on user interfaces for “computing nomads” – people who work on the same projects from different workstations in changing locations. The vision is that you would power down the computer at your office in, say, New York City, then start up your computer at home in New Jersey, picking up right where you left off. Meanwhile, Joe Hellerstein (1999) was named director of Intel Research Berkeley in California. His job is to muster forces to solve problems inherent to large-scale computer networks, such as security holes. The lab developed a distributed computing system that serves as the platform for Hellerstein’s own project, dubbed PHI, for Public Health of the Internet. Indeed, the effort resembles a public-health initiative: researchers analyze clumps of users to understand not only how computer viruses spread but how people’s behavior increases risk. Hellerstein seeks to gather this information by simultaneously querying millions of computers over the Internet. He hopes to create a visualization tool that would synthesize the resulting data, enabling researchers to see how viruses spread around the globe.

In February 2004, Silex Microsystems, where Helene Andersson (2003) is business manager for life sciences, opened a new 1,000-square-meter facility near Stockholm, Sweden. The plant manufactures custom microelectromechanical parts for drug delivery devices, including micropumps designed by Debiotech, a Lausanne, Switzerland, startup, and microneedles for Haifa, Israel’s NanoPass Technologies. The factory can also manufacture lab-on-a-chip devices, but according to Andersson, “Europe’s big pharma companies haven’t begun using the chips yet.” To take up any slack in its assembly lines, Silex currently produces air-bag pressure sensors and specialty chips. Meanwhile, Stockholm’s Royal Institute of Technology took up the little slack in Andersson’s already busy professional life, naming her an associate professor earlier this year.

0 comments about this story. Start the discussion »

Tagged: Communications

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me