Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

TR: It sounds as if youre pretty closely in tune with the recommendations of the National Research Council report on the safety of genetically modified foods that was issued earlier this summer.

CONKO: Yes. I think for a very long time, the National Academy of Sciences and specifically the National Research Council panel have gotten the question of scientific risk right. Through the last decade and a half, there have been reports essentially coming to the same conclusion: that theres no reason to believe that organisms created using recombinant DNA will be inherently risky, either for the environment or for human consumers.

In some cases, though, the reports out of the National Academy have made what are essentially political arguments. There was a report in 2000, looking at the way the U.S. Environmental Protection Agency regulates recombinant DNA-engineered plants, and another in 2002 looking at the way the U.S. Department of Agriculture regulates such plants. In both cases the panel concluded that theres no scientific reason to believe that theres special risk from genetic engineering. And yet in both cases, the panel concluded that, the science notwithstanding, it was OK to impose special regulations on genetically engineered plants because the public expected it, and having a special regulatory apparatus was likely to promote public acceptance of the technology.

TR: That seems logical. Such oversight would assure people that the technology and the resulting plants are safe, right?
CONKO: I don’t think so. Regulatory agencies, parts of the scientific community, and in particular, the biotechnology industry have advocated for more regulation, not because it was scientifically justified, but because in their opinion the public would accept the technology more readily if there was heightened regulation. But its very difficult to document positive impact on public acceptance coming from the extra regulation. In fact, the public often views that regulation as indicating a special risk. And the downside of the extra regulation is that the technology becomes so expensive to use and even to field test that only the biggest biotech firms are able to put recombinant products on the market. In a lot of cases, smaller firms have either gone out of business or had to merge with the big companies. And even in many public sector research centers, scientists are creating all of these wonderful new things in the laboratory and then stopping after theyre grown out in greenhouses. Its prohibitively expensive to put them out in the field and test them, so that they have practically no chance of ever making it to market and actually helping. Much of this research is intended to help low-income consumers in the United States or poor farmers in less developed countries. These projects are essentially dead at the point when greenhouse experiments are done because public sector researchers just cant afford to put them into the field.

TR: But without such regulation, what can we do to ensure that these crops are safe to eat and safe for the environment?
CONKO: There are a couple of models in the scientific literature for how you might go about regulating risky products very carefully, regulating moderate-risk products somewhat less stringently, and regulating very low-risk products much the same as you would a classically bred plant. We also argue that in some cases, it probably makes sense to introduce conventionally bred plants into the regulatory systemplants that have not previously been regulated at all.

TR: How do you assess the risks to determine how each proposed plant should be regulated?
CONKO: In most cases we can predict with a high level of certainty whether a new gene introduced into a particular crop species and then grown in a particular environment is likely to have the kinds of risks that we are aware of. We know that crop plants can spread genes to related plants through cross-pollination. So if you were looking at a crop plant that had wild relatives in close proximity, you would look and say, What would happen if the new gene or the new characteristic got into the wild population? In some cases, it would be completely benign. In some cases, it might have a modest impact. And in some cases, it might have a very serious impact. But you would usually be able to predict that with high degree of confidence even before the plant was introduced into the field.

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me