Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

The Future of Oxygen

Although the goal of Oxygen is to make interacting with computers far easier, the first generation of pervasive computers is bound to come with a new set of problems. “If you think computers are frustrating now, just wait,” says principal research scientist Larry Rudolph, who heads the Oxygen Research Group, which is working to answer some fundamental questions about pervasive computing. For example, what happens when someone without an advanced degree in computer science asks an intelligent office to open the drapes, and it doesn’t respond? When a computer freezes, rebooting often does the trick, but you can’t exactly reboot drapes. One solution is instant messaging, which would allow a user to converse with the system to diagnose what might be wrong and learn how to fix it. “It’s very similar to what happens today if your Internet service doesn’t work at home. You call up Verizon and say, Is the system okay?’” Rudolph says. But instead of talking with a technician, you would talk directly with the system.

Another forward-looking Oxygen project asks the question, if we incorporate hundreds or thousands of small, independent, and often unsupervised computing devices into our homes and workplaces, how can we be sure that they won’t be hacked? Srini Devadas, professor of electrical engineering and computer science, proposes using the unique physical properties of chips to serve as a sort of password. Chips that appear to be identical actually have minute differences, which can be measured by timing how long signals take to pass through certain paths on the chip. These delays can be recorded when the chip is created, stored in a central database, and used to create a chip-specific key. The idea is that in order for a computer, sensor, or smart card containing the chip to run certain software or authenticate a purchase, it would have to have the correct key.

The chip was a serendipitous discovery, Devadas says. When he originally joined Oxygen, he was interested in task automation. But through conversations with other researchers, he realized that security was a big issue in ubiquitous computing. “This is a prime example of the Oxygen project bringing together people from different disciplines and creating something that really wouldn’t have happened unless a hardware guy got together with a computer security person,” Devadas says.

It may be five or ten years before many of these technologies start making it into homes and offices, and it may be quite a while after that before they are integrated into the “well-oiled, humming whole” that Dertouzos envisioned when he first launched the program. Nevertheless, judging from the first prototypes coming out of Project Oxygen, it’s clear that the winds of change are beginning to stir the drapes.

0 comments about this story. Start the discussion »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »