Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

When it comes to departments of electrical engineering, MIT ranks number one, according to U.S. News and World Report. It’s a fitting achievement for the school that was first in the United States to introduce electrical engineering classes and since then has been the birthplace of developments such as strobe lights and Rivest, Shamir, and Adleman-or RSA-public key encryption, the world’s most pervasive encryption system.

Today the Department of Electrical Engineering and Computer Science is a behemoth of some 120 faculty members and 2,000 students. They work and study in the shadows of such giants as Vannevar Bush, who developed the first useful computational machine, and Marvin Minsky, a pioneer of artificial intelligence who built some of the first mechanical hands.

But the department is never overshadowed by its past or overwhelmed by its present reputation. As it celebrates its centennial this month, the department continues to look to a future of breaking boundaries in research and teaching-from working across disciplines to using technology to overhaul the way courses are taught.

Life-Linked Research

Like the rest of the Institute, Course VI is awash in interdisciplinary research. The most prominent interactions involve work on biological projects.

“This century is the century of biology, like the previous century was the century of physics,” says associate professor Rahul Sarpeshkar, whose research group is working on a number of biology-focused projects. One is the development of a processor for a bionic ear. Cochlear implants can be connected directly to the auditory nerve, making hearing a reality for those profoundly deaf who still have the auditory nerve intact. Sarpeshkar’s group is creating a very low-power analog processor to interpret sound signals. Because of its extremely low power consumption, it will function for decades once it has been implanted inside a person’s ear. And because the silicon implant mimics the ear’s natural cochlear structure, it will be better than conventional hearing aids at distinguishing sounds amid irrelevant background noise. Within the next year or two, Sarpeshkar says his processor will be ready for use, at which time “you won’t even know the person is deaf.”

At the same time, the group is taking cues from nature in its development of other systems. For example, Sarpeshkar draws on the brain’s neural activity and left-brain and right-brain tendencies to inform his work on a hybrid computer, a machine that uses both analog and digital processes to compute. Also, to develop motion chips that, in a few years, could be used for target tracking, security cameras, and robotics, Sarpeshkar is taking lessons from houseflies, whose eyes are naturally highly sensitive to motion.

But this is not the only biology-associated project having an impact. Professor Eric Grimson, associate director of the Artificial Intelligence Lab, has been working in conjunction with physicians at Boston’s Brigham and Women’s Hospital on image-guided surgical processes. His computer systems use a patient’s preoperative scans to build a precise graphical model of the surgical area. Before surgery, doctors study the model to plan the least invasive means of completing their tasks. In the operating room, they project the graphical model onto the patient’s body to help them navigate. Also, throughout the surgery, Grimson’s systems track the surgical tools, showing the doctors the exact location of the tip of each tool and allowing them to guide it very accurately to the key structures they want to reach.

“The reason surgeons like this is, typically, it reduces surgery times by half,” Grimson says. “It lets the surgeons do surgeries they would otherwise treat as inoperable.”

Grimson’s system is used only at Brigham and Women’s Hospital, but he notes that similar-though less sophisticated-systems have started to appear on the market. He expects that in two to three years, pending government approval, such systems will be widespread.

Other notable projects include the research of professor David Gifford and associate professor Tommi Jaakkola. Their work links computer science with research on the human genome. Also, professor Jim Fujimoto has pioneered a new field of study-optical coherence tomography-that focuses on diagnostic surveys of the retina. And assistant professor Vladimir Bulovic, who develops devices that use organic materials as semiconductors, has helped produce organically powered crystals that glow in a variety of colors. These crystals could be used to make computer monitors that would consume much less power than today’s models.

“Electrical engineering, as one of the most mature engineering fields, has a lot to contribute to biology in terms of how you think about and approach problems,” says assistant professor Joel Voldman, who, along with assistant professor Jongyoon Han, works on biological microelectronic mechanical systems. Voldman has created an electronic method for holding cells in place so they can be studied.

In the end, department head John Guttag sums up his department’s growing focus: “You look at the department today, and it’s much more involved in both biology and medicine than ever before. we’ll continue to evolve in that direction.”

0 comments about this story. Start the discussion »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me