Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

TR: Could an understanding of human networks influence how engineers do their work?

Watts: Yes. By analogy, think about biomimicry-that is, creating systems based on biological systems, reverse engineering how the organism does it. The idea in biomimicry is that many “engineering” problems have already been solved in nature, so why not mimic how nature does it? In the same way you can do “sociomimicry”-creating systems based on human organizations.

For example, Toyota group had a catastrophic failure when one of its factories that manufactured a particular safety component burnt to the ground. The company had no reserves and wouldn’t be able to rebuild the factory for at least six months. They had been churning out 15,000 cars a day, and now their production drops to zero in three days. This is the worst nightmare come true-one that could really end a company.

Suddenly they go into this frenzy of completely decentralized activity. Two hundred different companies collaborate to form six entirely independent production systems using none of the specialized equipment designed to build these component parts. They just jury-rig things from all over the place, and within a week production is up and running. It’s a phenomenal kind of recovery. Makes me think of the bad guy in Terminator 2: you blow a hole in him, he meshes around a little bit, then he’s as good as new.

Engineers would love to build systems that can self-heal in this way. But if you look at the Columbia and the power grid in the Western U.S., you see the opposite. Small failures become catastrophes. What we’d like are systems that avoid not only little failures but catastrophic failures as well, and which can, in a decentralized way, rewire themselves to adapt. We think that there’s a lot of potential for this if we could understand how human systems absorb these kinds of shocks. We may be able to engineer systems that have these same sorts of properties.

The same is true of research problems. Harvard psychologist Stanley Milgram’s discovery that anyone in the world can contact anyone else in only six steps-the famous “six degrees of separation”-is really a search phenomenon. And it’s actually a kind of search that computers have a difficult time performing. If you have a peer-to-peer network and you need to find a particular data file without a centralized directory, how do you do it? Currently, either you replicate it all over the place, or you do some brute-force broadcast search which ends up swamping the network. If we could learn how humans do this kind of thing then maybe we can design better algorithms for computers.

TR: Your book concludes with a chapter on September 11. How do the events of that day illustrate these ideas?

Watts: On September 12, 2001, one hundred thousand people had nowhere to go to work. But somehow, within a week, all those companies were functioning again-and they don’t even know how they did it. I attended a roundtable discussion with some of these people, and they said, well, we kind of did this and sort of did that and got some help from these people and more help from those people-and pretty soon we’re in an office somewhere.

You see, most of us view human organizations as if they’re trees: you chop off the trunk and nothing gets to the peripheries. But really, they’re more like leaves. A leaf may look like it has the same branching structure that a tree does, but if you chop a hole into the middle of a leaf and then pump fluid in it, the fluid oozes around the hole and then goes to the rest of the leaf. And that’s what human organizations are like. You can blow a hole right in the middle, but still pump information around the damage.

People have a local view of the world. I have my friends, and everyone else is “out there” somewhere-I don’t know about them or care about them and certainly can’t affect them. The science of networks is the antithesis of that world view. You affect things out there and they affect you. Sometimes that’s good because you can draw on resources that you didn’t know about yesterday, and sometimes it’s bad because you get affected by a disease or your computer crashes from a virus, and the only thing that you did wrong was buy Microsoft. So, the world is both small and big. All these metaphors are true, and the trick is to figure out an analytical framework that’s precise enough to give you some traction on these problems.

1 comment. Share your thoughts »

Tagged: Web

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »