Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

And NASA isn’t sitting on the sidelines. Although the exact shape of a successor program to the ill-fated X-33 is still being worked out by agency administrator Sean O’Keefe, who took the helm in late 2001, NASA had begun to fashion long-term plans for a bigger, more ambitious craft before the Columbia disaster. The Orbital Space Plane is just a blank sheet of paper right now, but the idea is that it would be ready to deliver crew and small amounts of cargo to the International Space Station by 2012.

If it does fly by 2012 or sooner, the Orbital Space Plane would get to orbit atop a conventional expendable rocket. But NASA hopes eventually to replace that rocket with a reusable system. To do this, researchers at NASA’s Marshall Space Flight Center in Huntsville, AL, are simplifying and streamlining rocket engine design and incorporating built-in diagnostic systems to detect problems such as cracks, leaks, and stuck valves. Such systems would yield tremendous savings compared to the space shuttles, whose engines are dismantled and inspected after every mission by hundreds of engineers. “The goal is to bring rocket engine reliability into the same category as today’s jet engines,” says Garry Lyles, who is in charge of propulsion systems for NASA’s program to develop technology for future launch vehicles. Right now, anyway, NASA’s plans call for a fully reusable space-shuttle replacement by 2025.

Private Push

Despite its poor track record with rocket planes, NASA remains a serious long-term competitor. But the agency’s somewhat leisurely timetable has left the field wide-open for the private sector. And excitement about the potential for small companies to actually produce a reusable rocket craft is growing. An X-Prize victory by one of these companies would dispel skepticism and could jump-start investment too. “It’s a psychological step,” says Rand Simberg, an aerospace engineer and consultant. “The little companies are going back and doing it like it should have been done in the first place.”

Indeed, anticipating the ability of small companies to blaze new paths, one firm is booking tourist flights on rocket planes that exist today only on paper. Space Adventures, of Arlington, VA, already sends tourists on zero-gravity airplane flights in Russia, and it arranged Russian space flights-each with a $20 million price tag-to the International Space Station for American businessman Dennis Tito in 2001 and South African Internet tycoon Mark Shuttleworth last year. Now the company is betting on Xcor: it has contracted for 600 Xerus tourist flights, and it has even taken cash deposits from more than 100 customers.

“We’ve been impressed with Xcor’s team of people and their ability to produce actual flying hardware and to carry out demonstrations on a low budget,” says Eric Anderson, president of Space Adventures. And though Anderson initially feared that Columbia’s frightening demise might cause some of his customers to think twice about space travel, none had asked for refunds in the first few days after the shuttle was lost-a fact he says shows a strong human commitment to space flight. Instead of scaring people off, he adds, what happened to Columbia “will serve as a wake-up call. Ten years from now, people will feel safer, will be safer” going into orbit as a result of improvements that will inevitably result from the investigation of the accident.

Space Adventure’s backing of Xcor and other rocket companies provides a synergy that might be crucial for realizing the decades-old visions of reusable rockets, says Bruce Lusignan, professor of electrical engineering at Stanford University and director of the Center for International Cooperation in Space, a worldwide consortium of universities. He says revenues from space-related tourism could be used to finance a new generation of tourist-oriented launch vehicles, and “that might be the core to building the capability up. That might be the right way to go.” And that means the EZ-Rocket-that unimposing test vehicle at the vast Mojave Airport-just might end up being the first PC of a new space age.

0 comments about this story. Start the discussion »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me