Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Researchers at Lumidigm may have discovered that identity, like beauty, is only skin deep. The Albuquerque, NM-based company claims that it can validate a person’s ID with fingerprint-like accuracy by shining an infrared light into a small section of skin and measuring the reflection-a finding that may add innovative security features to portable devices, including an accurate trigger lock for a new electronic gun.

Human skin, with all of its dermal thickness and subcutaneous layers, has a unique signature from person to person, something that was virtually unknown until last decade when medical researchers began looking for non-invasive ways to monitor patients for factors like glucose levels and blood alcohol content. Researchers at Inlight Solutions, also based in Albuquerque, discovered that light passed through skin measured individual blood-sugar levels accurately, but accuracy diminished when they applied the same procedure across a range of people.

“We discovered that this was due to individual and unique characteristics of skin, multiple layers and different structures, which would affect the different wavelengths of light,” says Robert Rowe, chief technology officer of Lumidigm and formerly of Inlight. “At that point we simply thought, shouldn’t this work as a biometric?”

So Lumidigm developed a dime-sized system containing two electronic chips. The first chip illuminates a patch of skin with light emitting diodes, then collects the rays as they reflect back. The second chip processes the signal to create a “light print” signature, which it compares to a set of authorized signatures. (Small devices, like a gun, would normally require a database of less than a dozen authorized users.)  The entire process of detection and authorization takes less than a second.

According to Rowe, the signature can provide about 1.75 million discernable combinations. To date, Lumidigm has tested about 1,000 people multiple times, yielding hundreds of thousands of measurements. The company tested pregnant women through each trimester and found subtle changes in body chemistry did not affect accuracy.

Unlike biometrics like fingerprinting and face recognition (see “Face Recognition”, TR Nov 2001), light printing doesn’t rely on image-processing. Instead, the device measures wavelengths of reflected light, which requires considerably less computing power.

“Other technologies need to take the original image and then crunch a lot of numbers to extract the features,” says Rowe. “That kind of front-end processing puts a lot of constraints on the hardware.” Lumidigm is betting that light printing’s relatively low processor demands will make it the biometric of choice for portable devices like cell phones-and handguns.

0 comments about this story. Start the discussion »

Tagged: Computing, Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me