Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

There’s no shortage these days of drugs that can kill cancer cells. The problem is delivering them effectively, because these same drugs often poison healthy tissue as well, forcing doctors to limit the concentrations they can safely administer.

Now, thanks to recent innovations at Duke University, an improved drug-delivery system may soon be in sight for cancer patients, one that targets individual tumors through heat and delivers cancer-fighting drugs in higher concentrations than conventional carriers.

Working on an idea first proposed in 1978, Duke researchers have developed a heat-activated liposome, or biological sac, formed from a membrane that only becomes permeable at certain temperatures. At normal body temperatures, the new liposome prevents the anti-cancer drug it carries from spreading into the system. But when the liposome enters a heat zone, such as a tumor that has been heated to 39° C or higher, the walls of the sac “melt”-undergo a gel-liquid phase transition-releasing the drug inside the tumor.

When the liposome exits the heated tumor, it reseals, minimizing the amount of drug released into the surrounding tissue.

The therapeutic benefit of using the new liposome for controlled drug release comes from the ability to deliver very high concentrations of anti-cancer drugs to precisely targeted tumor sites.

Last December, Duke researchers reported that the new liposome took only seconds to release doxorubicin, a potent chemotherapy drug, into cancerous tumors in mice-compared with hours using conventional liposomes. As a result, the drug concentration in the tumors was 30 to 50 times higher than that attained with conventional carriers, cutting tumor growth rate in half and eventually eradicating the tumors in two-thirds of the mice treated.

Columbia, MD-based Celsion Corporation is now working to couple the new liposome with microwave heat technology developed at MIT to target prostate, liver and ovarian cancers. “This liposome has potential for encapsulating many different cancer drugs,” said Augustine Cheung, Celsion’s chairman and chief scientific officer.

Celsion is producing an initial batch of liposomes containing doxorubicin for use in several large animal toxicity studies, which should be completed by the end of the year, Cheung said.

A first-phase clinical feasibility study with up to 30 patients will follow, perhaps a year or more away.

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »