Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Logic test: Arrays of memristors located where these electrical contacts converge can perform logic and memory functions.

A Memory and Logic Device
HP researchers demonstrate logic with memristors

Source: “ ’Memristive’ switches enable ‘stateful’ logic operations via material implication”
R. Stanley Williams et al.
Nature 464: 873-876

Results: Researchers at Hewlett-­Packard have shown that nanoscale circuit elements called memristors, which have previously been made into memory devices, can perform full Boolean logic, the type used for computation in computer processors.

Why it matters: Memristor logic devices are about an order of magnitude smaller than devices made from transistors, so they could pack more computing power into a given space. Memristor arrays that perform both logic and memory functions could eliminate the need to transfer data between a processor and a hard drive in future computers, which would save energy.

Methods: HP researchers fabricated memristors of various sizes on a silicon substrate by growing metal nanowires, coating them with titanium dioxide, and topping them with another series of metal nanowires oriented perpendicular to the first group. A memristor is formed where the two layers of wires cross. Each wire was connected to some test circuitry that the researchers used to bring current into the system. Using this test system, the researchers showed that a pair of memristors could serve as a logic gate: it processed information by switching one of the memristors on or off to create a 1 or a 0, depending on the initial states of the two elements. The memristors could also serve as a “latches”–that is, they retained data, “remembering” whether they had recently switched to a 1 or a 0.

Next steps: The basic material properties of the metal oxides used to make memristors are still not well understood, so it’s not clear whether the devices will be as reliable as silicon transistors. HP Labs researchers are working toward introducing a memory product based on memristors in 2013, and researchers will learn more as they develop facilities to make them.

0 comments about this story. Start the discussion »

Credit: Wei Wu

Tagged: Energy, Materials

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me