Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Cell transformation: A cocktail of three genes can transform skin cells into neurons (shown here in red).

Better Cancer Tracking
Physicians could monitor cancer by screening for tumor DNA

Source: “Development of Personalized Tumor Biomarkers Using Massively Parallel Sequencing”
Victor Velculescu et al.
Science Translational Medicine
2: 20ra14

Results: Researchers from Johns Hopkins University analyzed the DNA of tumors in patients with breast and bowel cancer and found regions of abnormal, re­arranged DNA that served as unique biomarkers of each patient’s disease. They then measured levels of cancer-specific DNA in one patient before and after treatment. The ratio of cancer DNA to normal DNA in blood samples dropped dramatically after treatment, but the marker was still detectable, suggesting that the patient should be monitored more closely for possible recurrence of the disease.

Why it matters: Cancer arises when a number of genetic alterations in cells allow them to grow uncontrollably. Tracking those alterations in a patient’s cancer DNA could provide a new way of detecting small tumors or stray cancer cells that linger after treatment. Scientists say the DNA changes detected in the study will prove much more accurate than existing biomarkers such as the prostate-specific antigen (PSA) associated with prostate cancer, which may yield false positives because even healthy cells can produce the protein.

Methods: Researchers compared the genome sequence of patients’ healthy DNA and DNA isolated from tumor tissue. After isolating unique tumor signatures, they developed a test that uses DNA amplification to measure the amount of tumor DNA and normal DNA in blood.

Next steps: To determine how the technology can be most useful in medicine, researchers will use it to analyze different tumor types as well as different stages of tumor progression. They are also working on automating the technique and reducing its cost.

0 comments about this story. Start the discussion »

Credit: Thomas Vierbuchen/Marius Wernig

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me