Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Cancer killer: A cross-¬section of a polymer matrix designed to prime the immune system against cancer.

An Anti-Cancer Implant
A polymer disc triggers an immune attack to shrink tumors

Source: “In Situ Regulation of DC Subsets and T Cells Mediates Tumor Regression in Mice”
David J. Mooney et al.
Science Translational Medicine
1(8): 8ra19

Results: An implantable disc acts as a therapeutic vaccine against cancer, triggering the immune system to attack malignant cells. It slowed cancer growth and increased survival time in mice with melanoma tumors. The cancers completely disappeared in 20 to 50 percent of animals given two vaccinations; the success rate depended on how long the tumors had been growing.

Why it matters: This is the first vaccine to shrink tumors in rodents, rather than just slowing their growth. (A number of other therapeutic cancer vaccines are under development, but none has been approved by the U.S. Food and Drug Administration.) The vaccine appears to suppress a part of the immune system that typically neutralizes an immune response after it’s achieved its initial goal. The ability to do this might be important in stopping tumors from recurring.

Methods: Researchers impregnated a polymer scaffold with three ingredients. Cytokines, signaling molecules produced by the immune system, attract immune cells known as dendritic cells into the implant. Fragments of genetic material designed to mimic bacterial DNA alert those immune cells that a foreign invader is present. The implant also contains ground-up pieces of the patient’s tumor, which show the dendritic cells what to attack. The dendritic cells take up the tumor molecules as they move through the scaffold; then they travel to the lymph nodes, where they present the molecules to a different set of immune cells, triggering them to attack.

Next steps: Researchers will examine whether the same strategy can shrink other types of tumors. A startup called InCytu, based in Lincoln, RI, is developing the technology for human testing.

0 comments about this story. Start the discussion »

Credit: Courtesy of Edward Doherty, Omar Ali, and Microvision Labs

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me