Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Nanotube Fibers
Superacids are the key to assembling nanotubes into large structures

Source: “True solutions of single-walled carbon nanotubes for assembly into macroscopic materials”
Matteo Pasquali et al.
Nature Nanotechnology
, published online November 1, 2009

Results: Rice University researchers have developed a way to arrange carbon nanotubes into large structures, including fibers hundreds of meters long, by dissolving them in a “superacid.”

Why it matters: Assembling carbon nanotubes into well-ordered materials such as long fibers has proved challenging; though lining them up in a flowing solution seemed like a promising approach, nanotubes don’t dissolve in conventional solvents. The new processing methods could be used to manufacture materials such as electrical transmission lines that are stronger and more conductive than the metal ones used today.

Methods: The researchers tried dissolving nanotubes in acids of varying strengths and found that in stronger acids, the tubes arrange themselves into a liquid crystalline phase in which they are well aligned. After developing a theoretical model to explain what conditions, including acid strength, are necessary to control the phase transitions, they were able to produce liquid crystal solutions that can easily be used to form long, high-quality fibers. Making them involves shooting the nanotube-­acid mixture through a nozzle similar to a shower head and removing the acid with a coagulant, causing the nanotubes to bind together.

Next steps: To realize the promise of the assembly methods, researchers will need to develop ways to manufacture solutions of carbon nanotubes that have uniform properties. Transmission lines, for example, would need to be made from a batch containing mostly conducting nanotubes, with as few semiconducting nanotubes as possible.

0 comments about this story. Start the discussion »

Credit: Stefan Pastine and David Okawa

Tagged: Energy, Materials

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me