Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Cool Fuel Cells
Improved materials make solid-oxide fuel cells more practical.

Source: “Impact of Anode Microstructure on Solid Oxide Fuel Cells”
Toshio Suzuki et al.
Science
325: 852-855

Results: Japanese researchers lowered the operating temperature of solid-oxide fuel cells by changing the structure of their electrode materials. They improved the power output of the cells at 600 °C by an order of magnitude.

Why it matters: Solid-oxide fuel cells can efficiently convert a variety of fuels, such as hydrogen and diesel, into electricity. But because they typically operate at temperatures above 700 °C, they require expensive materials, wear out relatively quickly, and are limited to stationary applications. Compared with other approaches to lowering the operating temperature of fuel cells, the new method has the advantage of using conventional materials that are relatively inexpensive. The new fuel cells could eventually be useful as auxiliary power sources to extend the range of electric vehicles, among other applications.

Methods: The researchers used established processes to fabricate tubular fuel cells 1.9 millimeters in diameter. To produce anodes with different structures, they heat-treated the tubes–which consist of a zirconia-based ceramic and a nickel-oxide mixture–at three temperatures lower than those ordinarily used in fuel-cell production. The resulting anodes were unusually porous, which proved to increase the performance of fuel cells based on them.

Next steps: The researchers established that they can bundle the microtubular fuel cells, but they need to develop ways to turn the bundles into modules that generate enough power for commercial applications.

0 comments about this story. Start the discussion »

Credit: Nature, 2009

Tagged: Communications, Materials

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »