Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Bulk Graphene
Slicing carbon nanotubes into ribbons makes speedier transistors.

Source: “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons”
James M. Tour et al.
Nature
458: 872-876

Results: Researchers at Rice University have developed a simple method for making large numbers of long, narrow ribbons of graphene, a single-atom-thick film of carbon. They chemically sliced open carbon nanotubes, which are essentially rolled-up sheets of graphene.

Why it matters: Graphene conducts electrons faster than silicon, so it could be used to make faster transistors. But it’s been difficult to manufacture the semiconducting type of graphene that’s needed for this application. One way to make semiconducting graphene is to cut the material into narrow nanoscale ribbons, typically a slow process. The new chemical method produces bulk quantities of these ribbons by modifying carbon nanotubes, which are easy to manufacture in large amounts. The approach also solves a problem with carbon nanotubes: their electronic properties can vary widely. Unzipping them to make nano­ribbons makes these properties more uniform.

Methods: The researchers exposed multiwalled and single-­walled carbon nanotubes to sulfuric acid and potassium permanganate, a strong oxidizing agent. The resulting reaction breaks a carbon-carbon bond in each nanotube, and the exposed carbon atoms immediately bind to oxygen atoms, creating a strain on the adjacent carbon-carbon bonds. This strain causes the adjacent bonds to break more easily, and a chain reaction propagates down the length of the tube, cleanly unzipping it into a ribbon. This reaction repeats on each of the nanotubes’ walls, or concentric layers, yielding as many ribbons per tube as there are layers. The graphene nanoribbons must then undergo another reaction to remove the oxygen atoms. Finally, the researchers incorporated the nanoribbons into transistors using previously developed techniques.

Next steps: The researchers are developing thin-film and ink-jet printing methods for depositing nanoribbons, which would speed up the manufacture of graphene-based electronics such as radio-frequency identification tags.

0 comments about this story. Start the discussion »

Credit: Science/AAAS

Tagged: Energy, Materials

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »