Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Smart Networks
Asociological theory could help overloaded routers direct traffic

Source: “Navigability of Complex Networks”
Marián Boguña et al.
Nature Physics
5: 74­-80

Results: Researchers at the University of Barcelona and the University of California, San Diego, have developed a mathematical model demonstrating that Internet routers can effectively deliver data even without detailed information about all the routers in a network. Having limited information about neighboring routers is enough.

Why it matters: The current system for routing data between the networks of different Internet service providers (ISPs) isn’t expected to continue working as the Internet grows. The routers that handle this traffic require lists of network addresses, called routing tables, which tell them where to forward packets of information. These tables must be regularly updated, a process that can take minutes for a single change. As the network grows, the number of updates increases to the point that the tables are almost never up to date, and parts of the network are not accessible because addresses are missing. These problems could be avoided with the new model, since it doesn’t require up-to-date routing tables.

Methods: The researchers looked to ­sociology experi­ments from the 1960s in which a person was asked to forward a letter to a stranger by sending it through friends and acquaintances. It took only a few hops for the letter to reach its intended recipient because people used clues, such as a friend’s profession, to guess who might help move the letter closer. Similarly, the researchers’ model shows that by using only a little bit of information about the nearest neighboring routers, such as their location and the type of traffic they recently received (data that can be acquired quickly via the direct link between neighbors), routers can continue to deliver packets of information even if their routing tables are missing addresses.

Next steps: The researchers suspect that they could further improve the performance of their model by looking at the location and traffic history of routers a few hops away from a particular router. They also hope to test the protocol in a working network.

0 comments about this story. Start the discussion »

Credit: Macmillan Publishers, Ltd: Nature Nanotechnology vol. 4, issue 1 © 2009

Tagged: Computing, Web

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me