Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Light bending: An image produced by a ¬scanning electron microscope shows a wedge-shaped prism. The device was carved from layers of metal and insulating material (inset) punched with rectilinear holes.

Metamaterial Prism
A new material for ultrahigh-­resolution ­microscopes

Source: “Three-dimensional optical metamaterial with a negative refractive index”
Xiang Zhang et al.
Nature 455: 376-379

Results: Researchers have fabricated a material that interacts with near-infrared light in a way that no naturally occurring material does. A prism made from the material has a negative refractive index: that is, it bends light in the direction opposite the one in which ordinary materials bend it.

Why it matters: The prism is the first practical device for redirecting near-infrared light in this way. Devices made from the material could be used in microscopes to produce much sharper images. They could also be used to route light on a microchip or even to render objects invisible to near-infrared wavelengths by directing light around them. Some previous negative-­index materials worked only with microwaves; others, which did work with visible or infrared wavelengths, transmitted little light and were so thin that they were difficult to use. The new material is thicker and transmits more light, making it potentially more useful.

Methods: The material is made up of alternating layers of a metal, which conducts electricity, and an insulating material; both are punched with a grid of square holes. This structure gives the material its unusual properties: it creates electrical circuits that respond to the magnetic field of light and change the way light moves through the material.

Next steps: The first applications are likely to be in high-resolution microscopy. The researchers are currently developing methods for making the material in larger quantities

0 comments about this story. Start the discussion »

Credit: Nature, Copyright 2008/Jason Valentine et al.

Tagged: Computing, Materials

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me