Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Genetically Prescribed Vitamins
Newly discovered genetic variations could predict who needs more folic acid

Source: “The prevalence of folate-remedial MTHFR enzyme variants in humans”
Nick Marini et al.
Proceedings of the National Academy of Sciences
105: 8055-8060

Results: Scientists at the University of California, Berkeley, identified several new variations in the gene for methylenetetrahydrofolate reductase (MTHFR), an enzyme that converts the B vitamin folate (called folic acid in supplements) from one form into another. They found that some variants of the enzyme need more folate to work effectively, a finding that could have implications for human nutrition.

Why it matters: Scientists hope that this type of research will eventually pave the way for individually tailored doses of vitamins. In particular, the work may help suggest who needs to take more folic acid to prevent ailments such as birth defects and possibly heart disease, which have been linked to malfunction of the MTHFR enzyme.

Methods: Researchers sequenced the MTHFR gene in 564 people of different ethnicities. Then they added the human gene sequences to yeast cells, which were engineered so that their growth rate depended on how well the enzyme was working. By feeding the yeast varying amounts of folate, the scientists could determine which of the genetic variants needed more of the vitamin to function properly.

Next steps: An ongoing human study performed in collaboration with the Children’s Hospital Oakland Research Institute and the Joint Genome Institute in Walnut Creek, CA, should provide more data on the enzyme’s role in birth defects. Scientists will sequence the gene in 250 normal children and 250 children with neural-tube defects to see whether the poorly functioning variants appear more often in the latter.

1 comment. Share your thoughts »

Credit: Wiley-Liss, a subsidiary of John Wiley and Sons

Tagged: Biomedicine, biotechnology, genes, vitamins

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »