Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

This MRI of a mouse brain clearly shows a dark circle (arrow) of magnetic cells. The cells, genetically engineered to produce magnetic particles and then injected into the brain, could provide a new approach to imaging.

Magnetic Genes
Genetically ­engineered cells make their own nano magnets, providing clear MRI images

Source: “MagA is sufficient for producing magnetic nanoparticles in mammalian cells, making it an MRI reporter”
Xiaoping P. Hu and Anthony W. S. Chan
Magnetic Resonance in Medicine
59: 1225-1231

Results: Scientists genetically engineered mammalian cells to produce magnetic particles three to five nanometers in diameter. The particles can be detected with magnetic resonance imaging (MRI), which could give scientists a novel way to track cells in the body.

Why it matters: Scientists typically use fluorescent markers to track specific cell types. But fluorescent signals can’t travel very far through animal tissue, so the approach is of limited use in live studies. Cellular labels detectable with MRI, which can see deep into the body, could allow scientists to observe a range of biological processes as they unfold in live animals.

Methods: From a pond-­dwelling bacterium, scientists isolated a gene for producing magnetic particles, which the bacterium uses like a compass. They inserted the gene into human cells and injected the cells into the brains of live mice. The mouse cells began to produce their own magnetic particles and could be seen clearly with MRI.

Next steps: The researchers will further assess how the nanoparticles could be used with MRI by better characterizing them and measuring their effect on cells–determining, for ­example, whether they are toxic or whether they alter cellular functions in living animals.

1 comment. Share your thoughts »

Credit: Wiley-Liss, a subsidiary of John Wiley and Sons

Tagged: Biomedicine, biotechnology, genes, vitamins

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me