Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Sound waves, moving from left to right, encounter an object surrounded by an “acoustic cloak” that causes the waves to re-form as if the object weren’t there.

Acoustic Cloaking
Design for meta­materials that deflect sound waves

Source: “Acoustic cloaking in two dimensions: a feasible approach”
Daniel Torrent and José Sánchez-Dehesa
New Journal of Physics
10: 63015-63025

Results: Designs have been drawn up for a material that could lead to the first acoustic cloaking device. Computer models suggest that alternating layers of two types of patterned, elastic rods, called sonic crystals, would direct sound waves around an object so that they re-formed on the other side with no distortion, as if the sound waves had never encountered the object.

Why it matters: The cloak could make ships invisible to sonar and improve the acoustics of concert halls by allowing sound to pass around load-bearing columns. Buildings covered in the material would be shielded from street noise. Other researchers have designed and built materials that can cloak objects from microwaves, but they divert only particular wavelengths. The new research predicts that an acoustic cloak would shield objects from a broad spectrum of sounds, from high pitches to low.

Methods: The researchers developed computer models based on previous theoretical work and used them to simulate the movement of sound waves around acoustic cloaks with varying numbers of layers. The models showed that sound waves flow best around materials made of 200 layers of composite sonic crystals.

Next steps: The designed material would work only in two dimensions–with sound waves traveling in a plane. The researchers will extend their theoretical work, developing new designs for materials that work in three dimensions, and then build and test them.

0 comments about this story. Start the discussion »

Credit: New Journal of Physics

Tagged: Computing, Materials, nanotechnology, nanotoxicity, cloaking

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me