Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

New Stem Cells Cure Disorder in Mice
The findings demonstrate how these cells could be used in human therapies

Source: “Treatment of sickle cell anemia mouse model with IPS cells generated from autologous skin”
Tim M. Townes, Rudolf Jaenisch, et al.
Science 318: 1920-1923, published online December 6, 2007

Results: Scientists have cured a blood disease in mice using cells from the animals’ tails. A new technique that does not require the use of embryos enabled the researchers to reprogram the cells to behave like embryonic stem cells.

Why it matters: The findings are the first to demonstrate the potential of such cells, known as induced pluripotent cells, in treating disease. The cells have been the source of great excitement among both researchers and the public because they hold therapeutic promise and because they sidestep the major ethical concern associated with embryonic stem cells: the destruction of embryos.

Methods: Rudolf Jaenisch and his colleagues at the Whitehead Institute for Biomedical Research in Cambridge, MA, reprogrammed the mouse tail cells to express four genes that are normally active only during embryonic development. After correcting the genetic defect responsible for sickle-cell anemia, they treated the cells with growth factors to trigger the development of blood-­forming stem cells. Mere days after the researchers injected the stem cells into the animals’ bone marrow, symptoms of the disease had reversed.

Next steps: Scientists are concerned that the mechanism used to reprogram the cells to make them pluripotent could increase the risk of cancer. To make the cells safe for human use, the researchers are developing alternative methods.

0 comments about this story. Start the discussion »

Credit: Massachusetts General Hospital BioMEMS Resource Center

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »