Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Better Lithium-Ion Electrodes
Silicon nanowires could increase the storage capacity of batteries.

Source: “High-performance lithium battery anodes using silicon nanowires”
Yi Cui et al.
Nature Nanotechnology 3: 31-35

Results: Researchers at Stanford University demonstrated that silicon nanowires used as anodes in lithium-ion batteries have five to eight times the energy-storage capacity of the graphite anodes normally used in the batteries. The researchers also showed that the nanowires can absorb and release lithium ions quickly over many cycles without breaking apart.

Why it matters: The advance could lead to greater storage capacity in lithium-ion batteries. Such batteries work by shuttling lithium ions between the cathode and the anode (the positive and negative electrodes) as the batteries are charged and discharged. Silicon has long been considered a promising electrode material because it can, in theory, hold 10 times as many lithium ions as graphite. But as silicon absorbs lithium ions, it swells to many times its original volume. Over several cycles, this normally causes silicon electrodes to break apart and stop functioning properly. The silicon nanowires, however, were able to swell to four times their original size and remain intact, demonstrating that silicon could be a practical material for battery electrodes.

Methods: The researchers distributed gold nanoparticles on a stainless-steel substrate. When they exposed the nanoparticles to silane, a gas containing silicon, the gold catalyzed the growth of silicon nanowires. The researchers then tested the nanowire electrodes. They also studied the composition and structure of the nanowires.

Next Steps: The researchers are developing other ways to make the silicon nanowires, with the goal of finding techniques that are less expensive and thus potentially more practical for commercial manufacturing. Better cathodes also need to be developed before the full benefits of the new anode materials can be realized.

0 comments about this story. Start the discussion »

Credit: Anish Tuteja and Wonjae Choi, MIT

Tagged: Computing, Materials, MIT

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me