Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

A new coating made of microscopic threads can repel a variety of liquids, including water (dyed blue), methanol (green), octane (red), and methylene iodine (clear).

Coating That Repels Oil
New materials clean themselves, elimi­nating the need for soap and water.

Source: “Designing superoleophobic surfaces”
Gareth H. McKinley, Robert E. Cohen, et al.
Science 318: 1618-1622

Results: Researchers at MIT and the Air Force Research Laboratory at Edwards Air Force Base in California have made novel materials that cause oil to bead up and form near-spherical droplets that easily roll or even bounce off surfaces. The researchers also analyzed the mechanisms behind the materials’ oil-repellent properties and developed design rules that could be useful for making similar materials in the future.

Why it matters: The researchers’ oil-repellent surfaces could make rubber hoses and engine seals more durable by preventing them from absorbing oil and swelling. Eventually, the detailed design rules could help scientists develop materials for other applications–such as transparent, self-cleaning displays, something cell-phone companies have been working on for years.

Methods: The air force researchers first developed new molecules containing high concentrations of fluorine atoms. When applied to a surface in a thin film, the molecules cause oil to bead up. The MIT researchers found a way to blend these molecules with commercial polymers and enhanced the liquid-­repelling properties of the blended material by spinning it into microscopic threads. These threads accumulate on a surface, creating a rough, air-trapping network that alters the contact angle between the material and oil, causing the oil to bead up even more than it would on a flat film.

Next Steps: The polymeric surfaces aren’t ideal: for one thing, they’re opaque. The researchers hope that the design rules they developed will allow other researchers to create super-oil-repellent materials that overcome current limitations.

0 comments about this story. Start the discussion »

Credit: Anish Tuteja and Wonjae Choi, MIT

Tagged: Computing, Materials, MIT

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »