Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

These heart-muscle cells, with key contractile elements shown in red, could power robotic devices.

Muscle-Powered Devices
Novel machines could improve drug testing and lead to new kinds of robots

SOURCE: “Muscular Thin Films for Building Actuators and Powering Devices”
George M. Whitesides, Kevin Kit Parker, et al.
Science 317: 1366-1370

RESULTS: Researchers at Harvard University have made several small mechanical devices powered by heart muscle harvested from rats. The creations include pumps, a device that “walks,” and one that swims.

WHY IT MATTERS: The scientists made the machines to study the behavior of muscles and to provide a platform for testing heart drugs. (The devices provide an easy way to monitor the effect of drugs on heart tissue.) Eventually, they could be used in new types of robots that can change shape, grip objects, and propel themselves.

METHODS: The researchers used a fabrication method called spin coating to make ultrathin elastic films; then they applied patterns of proteins to the films. Finally, they added heart-muscle cells; guided by the protein patterns, the cells organized themselves into working muscle tissue. To make the various devices, the researchers cut the muscular thin films into specific shapes (such as a triangle that resembled a fish’s tail) and changed the alignment of the cells. The devices, which must remain in a solution that keeps the muscles alive, can be controlled by electronic signals sent through the solution.

NEXT STEPS: The researchers are working to create devices that use human muscle tissue, perhaps grown from stem cells; such devices could be used in drug testing or to patch damaged heart muscle. So far, the muscle tissue survives for only a few weeks. For robotics applications, the scientists may combine heart muscle with other types of cells to increase longevity.

0 comments about this story. Start the discussion »

Credit: Kevin Kit Parker, Harvard University

Tagged: Computing, Materials

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »