Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Nanowire Microscope
A tiny laser could reveal new details about the structure and behavior of living cells

SOURCE: “Tunable Nanowire Nonlinear Optical Probe”
Jan Liphardt, Peidong Yang, et al.
Nature 447: 1098-1101

RESULTS: Researchers have developed a nanowire-based laser smaller than a red blood cell. They incorporated the laser into a type of microscope that combines multiple microscopy techniques and achieves a resolution of about 100 nanometers.

WHY IT MATTERS: In addition to imaging by means of light, the microscope could eventually probe cells by applying finely controlled amounts of force with the nanowire; it could then monitor how these forces change the shape of cells and how the cells respond to such mechanical stimuli. This could give researchers a better understanding of how cells work.

METHODS: Tiny forces exerted by light from an infrared laser hold the nanowire in place. The laser also serves as an optical pump, providing a source of energy that induces the nano­wire to emit green light. Images can be obtained by measuring the light that either passes through or reflects off a sample as the nanowire moves over it. The device can also be used to trace the shape of a cell membrane by monitoring the displacement of the nanowire as it moves across the membrane.

NEXT STEPS: The researchers will modify the shape of the nanowire so that the laser can better hold it in place: the wire tends to slide around in the optical trap. A conical shape could give the device better resolution and give the researchers increased control over mechanical probing.

0 comments about this story. Start the discussion »

Credit: Yin laboratory, University of California, Riverside

Tagged: Computing, Materials

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »