Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The many angles and edges of the 24-sided platinum nanoparticles shown in this micrograph increase the catalytic activity on their surfaces.

Better Catalysts
Multifaceted platinum nanoparticles may help explain catalysis and could lead to cheaper fuel cells and alternative fuels

Source: “Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity”
Na Tian et al.
Science 316: 732-735

Results: Researchers at the Georgia Institute of Technology in Atlanta and at Xiamen University in China have made platinum nanoparticles with a new 24-sided shape. The surfaces of the nanoparticles have four times as much catalytic activity as the surfaces of commercial catalysts. This is because of the greater number of unstable atoms at the particles’ edges and the odd angles of the shape’s many facets.

Why it matters: Platinum is a common component of industrial cata­lysts. It’s also used in fuel cells and in experimental methods for producing alternative fuels. But it’s expensive, so researchers are constantly looking for ways to use less of it by making catalysts more active. The new shape and the methods used to make it could also help reveal how catalysts work in general, providing hints for researchers attempting to make better catalysts from cheaper materials.

Methods: The Georgia Tech and Xiamen researchers began with platinum particles scattered on a carbon surface. They then applied an oscillating voltage to the surface, inducing alternating chemical reactions that broke down the platinum particles, releasing platinum atoms. The voltage also influences how the atoms recombine to form new particles. For example, when a positive voltage is applied, oxygen atoms can infiltrate the growing nanoparticles, dislodging platinum atoms from certain areas but not from others. This is the process the researchers exploited to create the 24-sided shape. (The same process also causes a layer of platinum oxide to form on other parts of the nanoparticles, protecting them.)

Next Steps: The new platinum nanoparticles, which are 50 to 200 nanometers in diameter, are still at least 10 times the size of the particles now used in commercial cata­lysts, so they have a larger proportion of expensive platinum locked beneath their surfaces, where it can’t catalyze reactions. As a result, though the new nanoparticles are better catalysts by area, they are, for now, worse by volume, the key parameter when it comes to cost. The researchers are now modifying their fabrication process to produce smaller nanoparticles that still have the novel shape.

0 comments about this story. Start the discussion »

Credit: Xiang Zhang, Georgia Tech

Tagged: Computing, Materials

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me