Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Researchers have found a way to efficiently convert different human blood types into a neutral type that can be given to any patient

A Light Switch for the Brain
A light-triggered switch to control brain cells could aid in the development of therapies for depression, Parkinson’s, epilepsy, and other neurological diseases

Sources: “Multimodal Fast Optical Interrogation of Neural Circuitry”
Feng Zhang et al.
Nature 446: 633-639

“Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, with Single-Spike Temporal Resolution”
Xue Han and Edward S. Boyden
PLoS One, March 21, 2007

Results: Scientists at MIT and Stanford University have independently created a light-controlled molecular switch that can turn off electrical activity in neurons. By combining it with a similar, previously developed switch that can trigger electrical activity, neuroscientists can now use light to turn specific neural circuits on and off.

Why it matters: The new neural switch enables unprecedented control over the brain and could lead to more-effective therapies for epilepsy, ­Parkinson’s, depression, and other brain diseases. The neural switch could also serve as a research tool to help neuroscientists decipher the language of the brain–the information, encoded in the electrical activity of neurons, that forms our memories and directs our every move.

Methods: To create the new neural switch, researchers borrowed a gene from a lake-dwelling micro­örganism; the gene codes for a light-­sensitive protein that pumps chloride ions. One study showed that the ­chloride-ion pump can be genetically engineered into specific neurons in the brain or into ­muscle cells. When one of these genetically modified cells is hit with yellow light, the pump brings a negative charge into it, preventing it from firing.

Next Steps: The scientists are now using the two switches in animals genetically engineered to model epilepsy, depression, and Parkinson’s disease. The hope is to find neural cells whose activity or inactivity is responsible for symptoms characteristic of those diseases, including seizures in epilepsy. Such findings could aid in the development of drugs targeted to only those cells; one day, light-­activated implants might replace the electrodes used in treatments such as deep brain stimulation.

1 comment. Share your thoughts »

Credit: Macmillan Publishers LTD.: Nature 446(7136), Copyright 2007/Alexander Gottschalk

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me