Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Wine Component Boosts Exercise Capacity in Mice
Resveratrol allows treated mice to run for twice as long as untreated ones

Source: “Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1a”
Marie Lagouge et al.
Cell online, November 16, 2006

RESULTS: Researchers at France’s University Louis Pasteur, Strasbourg, and at Sirtris Pharmaceuticals have shown that resveratrol, a chemical component of red wine that has already been linked to longevity, protects mice against diet-induced obesity and insulin resistance and boosts their endurance, allowing them to run for twice as long as untreated animals before becoming exhausted. The researchers found that mice treated with resveratrol also had large, highly active mitochondria, the subcellular structures that convert nutrients into energy in almost all plants and animals. This effect was linked to activation of a gene called SIRT1, the mammalian equivalent of a gene known to influence life span in yeast.

WHY IT MATTERS: The findings may indicate the mechanism behind resveratrol’s life-extending effects: activating SIRT1 to boost metabolic function. If scientists can understand how to regulate the biochemical pathway that causes aging, they may be able to design drugs that can stop the diseases of old age.

METHODS: Mice fed a high-fat diet were given high doses of resveratrol (either 200 or 400 milligrams per kilogram of body weight, or the equivalent of about 8,000 to 16,000 glasses of red wine). The researchers then tested the resting metabolism, exercise capacity, and insulin sensitivity of the mice. They also used electron microscopy to study the size of the mice’s mitochondria and calculated differences in the expression of mitochondria-related genes in treated and nontreated mice.

NEXT STEPS: Sirtris Pharmaceuticals is conducting a clinical trial of a resveratrol­-like compound intended to treat type II diabetes.

0 comments about this story. Start the discussion »

Credit: A. Jackson, J. Mavoori, E. Fetz

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me