Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Spinning Light
A system combining a magnetic material and a semiconductor could lead to spintronic devices that pack more data into beams of light

Source: “Reconstruction Control of Magnetic Properties during Epitaxial Growth of Ferromagnetic Mn3-gGa on Wurtzite GaN(0001)”
Erdong Lu et al.
Physical Review Letters 97: 146101

Results: Arthur Smith, a professor of physics at Ohio University, and postdoc Erdong Lu have grown manganese gallium, a metal, on gallium nitride, a semiconductor commonly used to make blue lasers and light-emitting diodes. Smith and Lu believe that the new material could lead to room-­temperature lasers that exploit the spin of electrons (spintronics).

Why it matters: Lasers based on spintronics, rather than on conventional electronics, have the potential to increase bandwidth in optical networks. Currently, data is encoded as the frequency and phase characteristics of a beam of light. In a spintronic laser, however, electrons with a certain spin can create photons with a corresponding spin, resulting in polarized light. Using polarization to encode a light beam with data could increase the amount of information it can carry. But until now, researchers have lacked materials suitable for making spintronic lasers.

Methods: Using standard processes, Smith and Lu deposited a thin film of manganese gallium onto gallium nitride. Reflection high-energy electron diffraction revealed a smooth interface between the two materials–a necessity if electrons are to maintain their spin as they travel into the light-emitting semiconductor.

Next steps: Researchers must determine whether the spin characteristics of the electrons are indeed preserved. They must also test the material’s light-­emitting properties to determine how well the spin of electrons translates into polarized light.

0 comments about this story. Start the discussion »

Credit: Cornell University

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »