Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Smart Nanosize Containers
Nanoparticles could signal when they are inside specific types of cells, leading to new diagnostic and treatment methods

Source: “Toward Intelligent Nanosize Bioreactors: A pH-Switchable, Channel-Equipped, Functional Polymer Nanocontainer”
Pavel Broz et al.
Nano Letters 6(10): 2349-2353

Results: Researchers in Switzerland have made 200-nanometer-wide containers dotted with pores whose walls are made of bacterial proteins. They demonstrated that these nano containers can control the location and duration of a fluorescent signal–lighting up only when the acidity of their environment matches that inside cell structures called lysosomes, which digest foreign materials that enter a cell.

Why it matters: The work shows that nanoparticles using active pores can respond to environmental cues, such as acidity, to perform useful functions. In one application, pH-sensitive nano carriers would light up only once they encountered lysosomes, ensuring that they’d reached the inside of cells. The researchers earlier showed that the carriers can latch onto particular types of cells, such as macrophages, suggesting that such a system could be used to identify specific cells in a lab sample. With some modifications, it could also be used to release a drug only inside targeted cells, making drug treatment more effective and reducing side effects by protecting nearby tissue.

Methods: Specially designed polymers combined with bacterial proteins self-assemble to form the containers, while added enzymes that break down certain compounds, causing them to fluoresce, are trapped inside. The pores’ size prevents the enzymes from escaping but lets compounds gradually enter the container to be broken down, creating a long-lasting signal that is confined to the containers. The pH sensitivity is a result of two factors: the enzymes work best at lysosomal acidities, and the pores, which are open in most conditions, close at acid concentrations that are too high.

Next Steps: The research requires further tests to confirm that the nanoparticles work in living subjects. For potential drug-delivery applications, the researchers will pair drugs with specific cellular targets and develop a release mechanism; it could be based on synthetic pores that stay closed in neutral and alkaline environments as well as highly acidic ones, opening only in the particular pH range of the inside of a lysosome.

0 comments about this story. Start the discussion »

Tagged: Computing, Materials

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me