Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

A newly grown nerve fiber extends out of the spinal cord. (Courtesy of Annals of Neurology/John Wiley and Sons)

Growing Brain Cells
Drugs that trigger the birth of neurons could provide the next generation of treatments for neurodegenerative diseases such as Parkinson’s

SOURCE: “Dopamine D3 Receptor Agonist Delivery to a Model of Parkinson’s Disease Restores the
Nigrostriatal Pathway and Improves Locomotor Behavior”
J. M. Van Kampenand C. B. Eckman
Journal of Neuroscience 26(27): 7272-7280

Results: Scientists at the Mayo Clinic in Jacksonville, FL, found that a drug similar to ones used to treat Parkinson’s disease can spur growth of new neurons in the substantia nigra, the brain area damaged in the disease. In a study of rodents genetically engineered to model Parkinson’s disease, twice as much neurogenesis, or birth of new neurons, was seen in animals treated with the drug as in control animals. Many of the newly generated cells appeared to develop into dopamine-producing neurons–the kind that are lost in Parkinson’s. In addition, treated animals showed an 80 percent improvement in motor ability.

Why it matters: Current treatments for Parkinson’s disease replace or mimic dopamine, an important signaling molecule in the brain. But those treatments lose their effectiveness over time; boosting the brain’s ability to make more of the dopamine-­producing cells could provide a more effective strategy.

Methods: Scientists treated rodents with a compound that triggers a dopamine receptor, delivering it directly to their brains for up to eight weeks. They then tracked the birth and development of new neurons and monitored the rodents’ performance in motor tasks.

Next steps: The team is now testing drugs currently used to treat Parkinson’s disease to see if they also trigger neurogenesis and, if so, how best to deliver these compounds to maximize effectiveness. Ultimately, they hope to find compounds that will help replace cells lost in a range of neurodegenerative diseases, such as Alzheimer’s and Huntington’s.

1 comment. Share your thoughts »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me