Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Light Speed
Faster optical networks from slower light

Context: Optical fibers cross cities and oceans and form the backbone of much of the world’s high-speed data communications network. But the throughput of optical fiber is limited by how fast data can be switched across networks. In a conventional router, light from fibers must be converted into an electrical signal, switched to an appropriate cable, then converted back to light again; this process can slow the speed of information transfer by a factor of ten. A router that did not need to use an electrical signal would be inherently faster. But the electrical signals are necessary to hold data intact until the optical switch to the next cable is ready. A team of scientists from the Ecole Polytechnique Federale de Lausanne in Switzerland has demonstrated a novel way to slow down light in an optical fiber, so that switching from cable to cable can be coordinated with light signals instead of electricity.

Methods and Results: The speed at which light travels through different physical media is not constant; light interacts with the matter it passes through, and this interaction can slow it down ever so slightly. Kwang Yong Song and colleagues fired an intense laser down a standard telecommunications fiber, causing atoms in the fiber to vibrate. If an optical signal is sent from the fiber’s other end, the light interacts with these moving atoms more than it would with unperturbed ones, and it slows down by tens of nanoseconds along several kilometers’ length of fiber. Critically, the light’s speed in the fiber can be easily modulated: the more intense the laser, the more the atoms move, and the more the optical signal is delayed.

Why it Matters: The Swiss team is not the first to slow down light, but its experiments are notable for how they might affect the telecommunications industry. The new technique makes all-light routers feasible and could boost throughput from existing optical networks severalfold. That might enable scattered computers to link together seamlessly into a networked supercomputer, for instance. The method also works in standard optical fibers, making it compatible with existing telecommunications networks.

Source: Song, K. Y., et al. 2005. Observation of pulse delaying and advancement in optical fibers using stimu-lated Brillouin scattering. Optics Express 13:82-88.

0 comments about this story. Start the discussion »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me