Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

I am learning Latin–or, rather, relearning it, since I was taught the language in a haphazard way at school in England.

I set myself this whimsical task because I recalled that our masters told us that Latin made the mind supple, retentive, and acute; I am hoping that memorizing the language’s endless conjugations and declensions, and submitting myself to its exacting syntax, will keep my brain plastic as I cruise into my 40s.

Yet given my daily occupations at Technology Review, what has struck me about Latin literature is how little the Romans thought about philosophia naturalis, or natural philosophy–the precursor to the modern natural sciences. They cared a little more for technology, but mainly as a branch of civil engineering, and only insofar as it was a tool of governance. Upper-class Romans exercised their intellects upon administration, law, conquest, and rhetoric. To science and technology they were indifferent.

What technologies they did possess were refinements and expansions of Greek inventions. Even their grand public buildings were different only in scale from models they appropriated from the Greek-speaking East. In science, the Romans were even more indebted to Greek civilization. The atomism articulated by the Epicurean poet Lucretius in De Rerum Natura (“On the Nature of Things”) derives from the Greek pre-Socratic philosophers, who had speculated that the universe was composed of very small, elementary things.

Thus, in the narrow sense that they intuited the existence of elementary particles, the Greeks can be said to have invented particle physics. In “A Who’s Who of the Unseen” we reprint part of an article by the MIT physics professor Philip M. Morse, published in November 1939. He wrote, “It seems to have begun with Democritus, this idea of matter’s being composed of fundamental, indivisible atoms.”

But what Democritus guessed, and the Romans repeated, was unverified until recently. Morse looked forward to confirmation, through experiment, of the existence of elementary particles smaller than the parts of the atom then known to chemists: the protons and neutrons, which are part of the nuclei of atoms, and the electrons, which form a kind of penumbra around nuclei.

Thirty years later, Jerome Friedman, now Institute Professor at MIT (and a member of Technology Review’s board), proved that the proton and neutron were not elementary particles but were, in fact, composed of hitherto theoretical thingums, which the physicist Murray Gell-Mann had named “quarks” (after the cry of seagulls in James Joyce’s Finnegans Wake). From 1967 to 1975, Friedman, Henry Kendall, and Richard Taylor studied the proton and neutron at Stanford University’s two-mile-long Linear Accelerator by hurling electrons at tremendous speeds against a deuterium or hydrogen target. They discovered that under these extreme conditions, the proton and the neutron, rather than keeping their fundamental identity, revealed smaller particles (a phenomenon physicists call “deep inelastic scattering”). For this work, the three were awarded a Nobel Prize in 1990.

1 comment. Share your thoughts »

Credit: Mark Ostow

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

Jason Pontin Editor

View Profile »

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me