Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

What does all this mean? A few, early applications of mesh networks are already emerging. Meshes will allow municipalities to create cheap or free urban Wi-Fi networks (we will be writing about Philadelphia’s effort in our November issue). Meshes have obvious advantages for military and security personnel who want networks that are unbreakable and “horizontal” (see “Instant Networks,” June 2005).

Environmental scientists like meshes because they can provide continuous data from large geographical areas over many years (see “Casting the Wireless Sensor Net,” July/August 2003). But the most important application of meshes will be in what technologists once called “pervasive computing”: embedding sensors and processors in things like clothes, electronics, and buildings and connecting them into smart networks.

Mesh networks will be big business. There are billions of networked devices and embedded processors in the world; many more will be built. The best way to connect all of them will be through mesh networks. But the most disruptive business impact of meshes will be this: telecommunications companies do not own them. Meshes profoundly diminish the organizations that own and manage communications backbones.

But I believe that the most intriguing aspect of mesh networks is their cybernetic qualities. That is, mesh networks are adaptive systems that resemble biological systems (we recently wrote about MIT mathematics professor Norbert Wiener, the founder of cybernetics: see “Cybernought,” June 2005). Many meshies like to say that they draw their inspiration from the behavior of swarming bees or ants.

Some go even further. In “AntHocNet: An Adaptive Nature-Inspired Algorithm for Routing in Mobile Ad-Hoc Networks,” published this year by the Dalle Molle Institute for Artificial Intelligence in Manno, Switzerland, Gianni di Caro and colleagues describe how ants from the same colony will converge to discover the shortest path from their nest to food; he proposes an algorithm for routing on mesh networks that explicitly imitates ant behavior. Ant colonies suggest how apparently intelligent behavior can emerge from a few fairly simple rules. Maybe mesh networks will promote new technologies that possess some of the properties of emergent intelligence? Write and tell me at jason.pontin@technologyreview.com.

0 comments about this story. Start the discussion »

Tagged: Communications

Reprints and Permissions | Send feedback to the editor

Jason Pontin Editor

View Profile »

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »