Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

so what do I care?’ “

As he learned more about synthetic biology and met Amyris’s scientific staff, Melo changed his mind. Fuels are the largest of all businesses by revenue, but as a percentage of profits, oil companies spend only tiny sums on R&D and almost nothing on basic research. Melo decided his old industry was ripe for change. “The ability to modify microbes [means] we can be the Microsoft of fuels and chemicals, where we are in effect writing the software that goes into the fermentation tank,” he says. “That, to me, was game changing.” Melo directed the company to work on diesel, the world’s most widely used transportation fuel and one that is often in short supply. Producing the right type of molecule proved surprisingly easy. Within six weeks, the scientists had switched a single enzyme in their artemisinin-producing bugs and begun producing farnesene, the oil they had identified as a potential precursor to diesel.

“They look like very different projects–one is a medicine and one is a fuel–but the metabolic route is similar,” Collier says. “That was the big advance of Amyris.” Farnesene is a pleasant-smelling oil that accounts in part for the odor of apple skins. By performing one additional chemical step, hydrogenation, Amyris can turn the yeast-produced farnesene into farnesane, a highly combustible fuel with properties similar to those of diesel.

Yeast strains are tested for efficiency.

As a hydrocarbon like diesel and gasoline, farnesane won’t be subject to the problems that have affected other biofuels, Amyris is betting. Ethanol, for example, can mix with water, which may cause trouble when water makes its way into gasoline pipelines. Plant-derived biodiesels, meanwhile, contain impurities and can clog engines at low temperatures. Farnesane, on the other hand, can be simply dropped into the existing fuel distribution network. It even has an advantage over ordinary diesel: it contains no polluting sulfur.

But the project will have an impact only if it can be deployed at a massive scale. And no one is yet sure how well synthetic biology will work at such scales. Synthetic Genomics, a company started by gene-sequencing pioneer J. Craig Venter, reached a $300 million agreement with ExxonMobil last year to develop fuel-producing algae. Yet Exxon’s vice president for research and development, Emil Jacobs, told the New York Times that he didn’t want to “sugarcoat” the project’s chances. “For transportation fuels, if you can’t see whether you can scale a technology up, then you have to question whether you need to be involved at all,” he said.

The ability to make fuels in astonishing quantities isn’t the only thing needed for them to become a realistic option. They are also commodities that are sold at rock-bottom prices. The petroleum industry’s product, liter for liter, is half the price of Coca-Cola. Where were the main costs going to be in Amyris’s production process? If ethanol-industry averages held true, the sugar its yeast feed on would represent over half the final price of making farnesane.

Those calculations were part of what led Melo to “plant the flag firmly in Brazil,” recalls investor Duyk. American corn, though close at hand, would have been a poor bet. By 2007, booming U.S. ethanol production had sent corn prices soaring so high that tens of thousands of Mexicans demonstrated over the cost of tor­tillas. When oil prices fell in 2008 and corn prices remained at record levels, many U.S. ethanol makers could no longer make a profit.

A worker holds bottles of Amyris’s final product, diesel fuel.

Scale, cost, and competition with food supplies aren’t the only issues for biofuels. Amyris wanted to market its diesel as good for the environment; its brochures claim that its “No Compromise” fuels will release 80 percent less carbon dioxide into the atmosphere than fossil fuels. Today, Brazilian sugarcane is the only crop that can possibly back up Amyris’s green marketing. Brazilian studies say that sugarcane ethanol yields about 7 to 10 times as much energy as it takes to produce the fuel; in contrast, ethanol made from corn yields just slightly more than producing it consumes. While the environmental impact of growing sugarcane remains in dispute, it’s clear that the process requires less energy than cultivating corn. What’s more, Brazil’s biofuel producers are more efficient than those in other countries, partly because many Brazilian mills burn sugarcane waste to power their crushers and distillers, reducing the use of fossil fuels.

As a market, Brazil may bring other advantages, too. The country’s demand for diesel is high, so Amyris could build a respectable business without ever exporting a drop. Brazil also has space to increase production: sugarcane is now planted on about 3 percent of Brazil’s arable land, but the crop could expand onto more than 100 million acres currently used for grazing cattle. “You could probably quadruple and quintuple the cane production,” says Bill Haywood, the CEO of LS9 and a former oil company executive. “That is poorly understood by the rest of the world. I think that Brazil is going to be the birth of high-quality

25 comments. Share your thoughts »

Credits: Noah Friedman-Rudovsky
Video by Noah Friedman-Rudovsky, edited by JR Rost

Tagged: Biomedicine, Energy, Amyris

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me