Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Sugar Nation: Workers stockpile sugar at a sugarcane mill in the Brazilian state of São Paulo. Brazil is the world’s largest producer and exporter of sugar. The country may play a key role in producing the next generation of biofuels.

The four-lane Anhangüera Highway leads northwest from Brazil’s financial capital, São Paulo, into some of the most productive agricultural land in the world. The view from a car window reveals plantations of hairy eucalyptus trees and cow pastures rife with termite mounds. Fields of sugarcane roll out of sight over the hilltops.

Turn right at kilometer 104.5 and you enter Techno Park, a tidy corporate research neighborhood that looks as if it has been torn out of suburban California. And in a way, it has. In a building not far from the entrance are rows of neatly organized workstations, shiny fermentation tanks, and clanking centrifuges. All this machinery is a near-exact replica of the equipment at a facility in Emeryville, CA. Even the coat racks are the same.

The building is the Brazilian outpost of Amyris Biotechnologies, a U.S. research outfit celebrated for its work under a grant from the Bill and Melinda Gates Foundation to make a scarce malaria drug more widely available. Its founder, Jay Keasling, is considered a pioneer of synthetic biology, and the malaria project, which could save many thousands of lives, has been featured in the New Yorker. Last May, Keasling was awarded the Biotechnology Industry Organization’s first Biotech Humanitarian Award.

Less well publicized is that Amyris has raised more than $170 million in venture capital to get itself into the biofuels business and that its current plans call for producing nearly all that fuel in Brazil. Roel Collier, a Belgian fluent in Portuguese who heads Amyris’s Brazil operations, points to a 12-meter-tall steel tank in which genetically modified yeast is feasting on the juice of the sugarcane that is so abundant in this country. “Inside is cutting-edge American technology applied to the competitive advantage of Brazil,” he explains.

For the last two years, Collier’s responsibilities have included shipping drums of frozen Brazilian sugarcane juice to Amyris’s California laboratory, some 10,000 kilometers away. There, scientists have been genetically rewiring ordinary yeast cells to digest caldo de cana, as the juice is called, and turn it into farnesene, a fragrant oil that Amyris has shown can be converted into diesel fuel. In the fast-moving field of synthetic biology–a discipline that looks to rewrite the DNA of microörganisms as if it were computer code–the California laboratories of Amyris are considered state of the art. Researchers create and test tens of thousands of engineered yeast strains each week. The company employs nearly as many PhD yeast geneticists as all the universities in Brazil.

Feedstock: A sugarcane plantation near the city of Campinas. Each acre yields enough sugarcane juice to make 3,000 liters of ethanol.

But Brazil offers Amyris one critical advantage over the United States: the economic conditions there lend themselves to exploiting the technology commercially. Brazil is the world’s most efficient producer of sugar. Huge mounds of it pile up at the country’s 420 sugarcane refineries. With its tropical weather and aggressive business culture, the country dominates the global sugar trade. And enormous supplies of inexpensive sugar are the key to making Amyris’s technology practical.

“The reason to go to Brazil was pretty clear; it’s the cheapest, most readily available source of sugar to power the technology platform,” says Keasling, a professor of biochemical engineering at the University of California, Berkeley, who also heads the Joint BioEnergy Institute, a $135 million effort funded by the U.S. Department of Energy to extract sugars from wood chips, grass, and other inexpensive plant matter. In 10 to 15 years, its work could make sugar molecules as cheap to obtain in the U.S. as they currently are in Brazil. For now, though, the U.S. biofuels industry continues to make ethanol by fermenting the glucose in corn kernels. And corn is a relatively costly source of sugar, as the American ethanol industry has discovered to its distress. Despite taxpayer subsidies, U.S. manufacturers have not been able to turn consistent profits.

The story is different in Brazil, where sugarcane mills have been turning out inexpensive ethanol since the government launched a push for fuel independence in the 1970s. The country’s automobile fleet now consumes more ethanol than gasoline. Nearly 90 percent of cars manufactured in Brazil can run on the biofuel. The industry has realized that “geography is destiny,” says Mark Bunger, research director at Lux Research, a New York firm that studies the commercialization of emerging technologies. In ­Bunger’s view, only a few places on the planet have the rain, sun, and land mass needed to make biofuels at the scale and price that can have a real impact. “The understanding that we are coming to is that it’s never going to happen in some places,” he says, “and Brazil is the first place where the economics make sense.”

Amyris reached a similar conclusion about three years ago–hence its identical fermentation labs in Emeryville and Brazil. Scientists in California tinker with yeast to make it convert sugar to farnesene more quickly; then the bugs are airmailed south for testing under tropical conditions. This year, Amyris plans to begin construction of a towering fermentation complex in the Brazilian state of Goiás. When it’s done, it should be able to produce 100 million liters of


25 comments. Share your thoughts »

Credits: Noah Friedman-Rudovsky
Video by Noah Friedman-Rudovsky, edited by JR Rost

Tagged: Biomedicine, Energy, Amyris

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me