Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

In a hurry: Manoj Narang, founder and head of Tradeworx, buys and sells millions of shares every day, using algorithms that often execute thousands of trades per second.

If Manoj Narang is about to bring down the markets, he’s certainly relaxed about it. Narang, who wears a goatee and wire-frame glasses, is casually dressed in a brown shirt and dark gray sweatshirt. Sitting on a swivel chair with one leg tucked under the other, he seems positively composed, especially for a man who has just bought and sold 15 million shares with a total value of $600 million. For Narang, however, such volume represents just the start of a normal day. Though it’s about noon on a Friday morning, he has barely begun.

Narang is the head of Tradeworx, a hedge fund and financial-technology firm that makes purely automated trades; all decisions are reached and acted on at near light speed by computers running preprogrammed algorithms. “Actually, we run two businesses,” he says. “The first trades in and out of shares in about a second and holds them for an average of two or three days. That’s the medium-speed fund. The high-speed fund could make thousands of trades a second and holds them for a matter of minutes.”

By the end of the day, his computers will have bought and sold about 60 million to 80 million shares, with the heaviest activity in the last hour of trading, from three to four in the afternoon. Tradeworx and similar firms around the country will race to close billions of bets that hinge on things like tiny differences between the prices of shares in an exchange-traded fund holding the S&P 500 and the individual shares that make up the same index. The profits go to the company with the fastest hardware and the best algorithms–advantages that enable it to spot and exploit subtle market patterns ahead of everyone else. At the end of a typical day, the Tradeworx high-speed business holds no shares at all. Come Monday, Narang will look to trade millions more shares. It seems like a lot, and it is, but Narang estimates that he’s probably only somewhere in the middle of the top 50 traders by volume.

Just five years ago, automated trades made up about 30 percent of the market, and few of those moved as quickly as today’s trades do. Since then, however, automated trading has become much more widespread, and much quicker. Narang acknowledges starting his ultrafast group as a defensive maneuver when he began to notice faster traders eroding the performance of his medium-speed strategy. Now the medium-speed fund is adopting the techniques he developed in the ultrafast fund.

Buy! Sell! In Tradeworx’s offices in Red Bank, NJ, employees work in near silence, programming the algorithms that allow the company to profitably execute its speedy trading programs. Far from Wall Street, firms that specialize in this high-frequency trading represent an increasingly large portion of activity in the financial markets.

TheTabb Group, a consultancy based in Westborough, MA, estimates that high-frequency automated trading now accounts for 61 percent of the more than 10 billion shares traded daily across the numerous exchanges that make up the U.S. market. Tabb estimates profits from high- frequency trading in the first nine months of last year at $8 billion or more. With the rise of automation, the bulk of U.S. stock trading has moved from the once-crowded floor of Manhattan’s New York Stock Exchange (NYSE) to silent server farms run by exchanges and broker-dealers across the country: the proportion of all trades that the NYSE handles has shrunk from 80 percent in 2005 to 40 percent today. Trading is now essentially a virtual art, and its practitioners put such a premium on speed that NASDAQ has considered issuing equal 100-foot lengths of cable to the brokers who send orders to its exchange servers. (Though Narang and his team program their algorithms on PCs in their own office, actual trading is done through brokers’ servers located on the premises of an exchange–NASDAQ, the NYSE, and dozens of others.)

The NYSE itself is just finishing construction of a 400,000-square-foot data center in Mahwah, NJ. The new complex, slated to open in the spring, will have enough computing power to handle every trade on every market in the world, though


18 comments. Share your thoughts »

Credits: Steve Moors
Video by JR Rost

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me