Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Because they are derived from human patients with documented medical histories, iPS cells are accompanied by reams of previously inaccessible information. “You can see from their medical history the progression of the disease, how they responded to different drugs, exactly what symptoms they experienced, and when,” says Dimos. Certain drugs may be more or less effective depending on a patient’s genetic makeup; some people, for instance, respond well to the breast-cancer medication taxol, while others may have no response at all. If scientists knew that specific medications worked for certain people or, conversely, caused them to suffer severe side effects, they could use their cells to try to figure out why–and use that information to develop better therapies.

So far, Harvard Stem Cell Institute scientists and their colleagues have used iPS-cell technology to create more than 20 disease-specific stem-cell lines designed to help them study conditions including Parkinson’s and type 1 diabetes. While the field is still in its early stages, researchers have begun to see evidence that they can replicate certain aspects of human disease in a dish.

The first goal for iZumi is to establish its own bank of reprogrammed cells. To start, the bank will be stocked with cells derived from patients with various neurodegenerative diseases–ALS, spinal muscular atrophy, and Parkinson’s–as well as a cardiovascular disorder known as calcific aortic valve disease, which they’re studying in conjunction with collaborators at the Gladstone Institute at the University of California, San Francisco. By creating complex systems of cells that incorporate the different cell types affected in each disease, such as motor neurons and skeletal muscle cells, they can watch precisely how ALS and the other conditions develop.

The company wants to develop drugs, focusing on therapies for neurodegenerative diseases. It will also work with other pharmaceutical companies to find treatments for other diseases. “We believe that we’ll have our own proprietary therapeutics in development in the fifth year–by 2012,” says CEO John Walker.

A Bumpy Road
If iPS-cell scientists have learned anything from the saga of embryonic-­stem-cell research, it’s that potential doesn’t always translate into profit or success: despite the vast promise of embryonic stem cells, building a business model around their therapeutic use has been a challenge. Some of the blame can be laid on President George W. Bush. In 2001–citing ethical objections to the process used to obtain the cells, which destroys a days-old embryo–he restricted federal research funding for the technology to a small number of stem-cell lines already in existence. The controversy, the lack of federal investment, and some uncertainty surrounding the science itself made some researchers reluctant to study embryonic stem cells, and many venture capitalists were hesitant to back efforts to commercialize them.

Barack Obama ordered the limits on federal funding removed early in his presidency, but his predecessor’s policies probably set the field back many years. And embryonic stem cells are so finicky and unpredictable that developing treatments based on them has been difficult even apart from the funding obstacles. Only this year, more than a decade after human embryonic stem cells were first isolated, will they finally make it into clinical trials. The first therapy, a treatment for acute spinal-cord injury developed by biotech startup Geron, is headed for trials later this year.

“It’s kind of a ‘good news, bad news’ scenario,” says Daniel Omstead, CEO of Hambrecht and Quist Capital Management. “Every quarter or year, you see new developments that make you very excited about the future but more circumspect about … being able to make money in the near term for investment in technology that will cure disease.” He’s not yet sure whether iPS-cell technology will prove to be the stem-cell field’s home run, and neither are his fellow venture capitalists. “I think many companies will come out of the stem-cell area, but I don’t know that they’ll be focused on iPS cells necessarily,” says Amir Nashat of Polaris Venture Partners, which has funded a company partly based on the technology (see table above).

7 comments. Share your thoughts »

Credits: Junying Yu/University of Wisconsin-Madison, Technology Review

Tagged: Biomedicine, stem cells, diseases, embryonic stem cells, stem cell therapy

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me