Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Then, in October 2007, Pääbo and coworkers published a jaw-dropping paper about FOXP2 in Neanderthals, evolutionary relatives of modern humans that died out 30,000 years ago. The researchers isolated parts of the FOXP2 gene from the bones of two Neanderthals. Although they have yet to sequence the entire gene, they found that Neanderthals and modern humans matched at the two critical spots that separate humans and chimpanzees. Though often depicted as knuckleheads, our closest hominid relatives may have shared at least some of our capacity for speech and language. “There is no reason to think that Neanderthals did not have language as we do,” says Pääbo. But he adds that the many unknown genes involved in language will eventually have to be found and looked at in Neanderthals.

Geschwind is continuing his hunt for those unknown genes, applying to his behavioral-genetics work the technique he developed to compare human and chimp gene expression. His lab is now doing the same sort of coexpression studies on brains from healthy humans and schizophrenics, which he hopes will uncover connections that are broken in schizophrenia and perhaps lead to still more genetic pathways related to speech and language. He hopes eventually to do similar analyses with autopsied brains from people who had autism-spectrum disorders.

So far, Geschwind and his colleagues have found what amount to some interesting genetic words that they’ve been able to string into a few sentences to explain the roots of speech and language. They can’t yet tell a coherent story. Still, confidence is building that in the not-too-distant future, scientists will be able to write a lengthy book about how we evolved our phenomenal gift of gab, highlighting the critical suites of genes that make it possible. If they do, they could also find ways to correct disruptions to this network–­disruptions that can leave people at a serious loss for words.

0 comments about this story. Start the discussion »

Credit: John MacNeill

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »