Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Winning the Lottery
Last October, the X Prize Foundation announced a $10 million award for producing highly accurate sequences of 100 human genomes in 10 days or less without spending more than $10,000 per genome. One of the first entrants was 454, which plans to develop even smaller beads that it hopes will allow its machines to read even more DNA per run at roughly the same cost. “We don’t need any new physics or math to get to the $1,000 genome,” says Rothberg.

Leaving aside the question of when–or if–anyone will claim the X Prize, DNA sequencing will surely continue to plummet in price and increase in accuracy. “Until last year, sequencing was really struggling to have the impact on the next era of genomics that it needed to have,” says David Bentley, Illumina’s chief scientist. Basically, the price of traditional sequencing was just not dropping quickly enough. “Now the field is far more optimistic than it was,” he says. Next-generation sequencing “has a huge role to play.”

Hearing scientists tick off the possibilities is like listening to lottery winners. And personalized medicine like the type of cancer testing and treatment that Dana-Farber’s ­Meyerson hopes to help usher in is just a starting point. Bentley says the new sequencers will open windows on the vast “noncoding” regions of the genome that turn genes on and off. Egholm of 454 notes that the Human Genome Project did not actually sequence every last bit of human DNA; there may still be undiscovered genes that additional sequencing can find. Broad’s Lander imagines a torrent of new information about what leads a cell to differentiate into one type or another (a central mystery in developmental biology) and what controls different cellular states. “I realize that’s harder to explain than curing cancer,” he says, “but it’s ultimately more important, because it will affect all diseases.”

Within the next year, Lander predicts, scientists will be able to begin studies that generate “terabases” of information–one trillion As, Cs, Ts, and Gs. “I never even spoke the word terabase before last year,” he says. “And if all those data are on the Web and freely available, it’s going to drive a completely different kind of biology.”

Jon Cohen, a San Diego-based freelance writer and correspondent for Science, is working on a book that looks at the genetic differences separating chimpanzees from humans.

1 comment. Share your thoughts »

Credit: Steve Moors

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me